9,976 research outputs found

    Identification by Raman spectroscopy of Mg–Fe content of olivine samples after impact at 6kms?1 onto aluminium foil and aerogel: In the laboratory and in Wild-2 cometary samples

    Get PDF
    AbstractOlivine, (Mg, Fe)2[SiO4], is a common mineral in extraterrestrial materials, whose Mg–Fe content varies from the end-members Forsterite (Mg2SiO4: denoted ‘Fo’) to Fayalite (Fe2SiO4: denoted ‘Fa’), together with minor quantities of Ca, Cr, Mn and Ni. Olivine is readily identified by Raman spectroscopy, and the Mg–Fe content can be obtained by precise measurements of the position of the two strongest Raman peaks. Here we show that this is not only true for pristine and highly crystalline olivine, but also for grains which have undergone high pressure shock processing during hypervelocity impact. We demonstrate that there are subtle changes to the Raman spectra in grains impacted at 6.1kms−1 onto aluminium foil and into low density aerogel. We quantify these changes, and also show that if no correction is made for the impact effects, the Fe:Mg molar ratio of the olivine can be significantly misinterpreted. This study was stimulated by NASA’s Stardust mission to comet 81P/Wild-2, since freshly ejected cometary dust particles were collected (via impact) onto aluminium foil and into aerogel cells at 6.1kms−1 and these samples are being investigated with Raman spectroscopy. We identify the residue in one Stardust impact crater on aluminium foil as arising from an olivine with a composition of Fo97–100

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    Get PDF
    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    Get PDF
    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups

    High-Fidelity Teleportation of Independent Qubits

    Get PDF
    Quantum teleportation is one of the essential primitives of quantum communication. We suggest that any quantum teleportation scheme can be characterized by its efficiency, i.e. how often it succeeds to teleport, its fidelity, i.e. how well the input state is reproduced at the output, and by its insensitivity to cross talk, i.e. how well it rejects an input state that is not intended to teleport. We discuss these criteria for the two teleportation experiments of independent qubits which have been performed thus far. In the first experiment (Nature {\bf 390},575 (1997)) where the qubit states were various different polarization states of photons, the fidelity of teleportation was as high as 0.80 ±\pm 0.05 thus clearly surpassing the limit of 2/3 which can, in principle, be obtained by a direct measurement on the qubit and classical communication. This high fidelity is confirmed in our second experiment (Phys. Rev. Lett. {\bf 80}, 3891 (1998)), demonstrating entanglement swapping, that is, realizing the teleportation of a qubit which itself is still entangled to another one. This experiment is the only one up to date that demonstrates the teleportation of a genuine unknown quantum state.Comment: 13 pages, Latex, 5 figures(eps), to appear in Journal of Modern Optic

    Constitutive and life modeling of single crystal blade alloys for root attachment analysis

    Get PDF
    Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics

    Measurement of the Bs0-Bs0 oscillation frequency ÎŽms in Bs0→Ds-(3)π decays

    Get PDF
    The Bs0-Bs0 oscillation frequency ÎŽms is measured with 36 pb-1 of data collected in pp collisions at s=7TeV by the LHCb experiment at the Large Hadron Collider. A total of 1381 Bs0→Ds-π+ and Bs0→Ds-π+π-π + signal decays are reconstructed, with average decay time resolutions of 44 fs and 36 fs, respectively. An oscillation signal with a statistical significance of 4.6σ is observed. The measured oscillation frequency is ÎŽm s=17.63±0.11(stat)±0.02(syst)ps -1

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ''van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented

    First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder

    Full text link
    The effect of the electron-phonon interaction on magnetization relaxation is studied within the framework of first-principles scattering theory for Fe, Co, and Ni by displacing atoms in the scattering region randomly with a thermal distribution. This "frozen thermal lattice disorder" approach reproduces the non-monotonic damping behaviour observed in ferromagnetic resonance measurements and yields reasonable quantitative agreement between calculated and experimental values. It can be readily applied to alloys and easily extended by determining the atomic displacements from ab initio phonon spectra

    First observation of Bs0 → D*s2+XÎŒ-Îœ decays

    Get PDF
    Using data collected with the LHCb detector in proton–proton collisions at a centre-of-mass energy of 7 TeV, the semileptonic decays B0s→D+sXΌ−Μ and B0s→D0K+XΌ−Μ are detected. Two structures are observed in the D0K+ mass spectrum at masses consistent with the known Ds1(2536)+ and D∗s22573)+ mesons. The measured branching fractions relative to the total B0s semileptonic rate are B(B0s→D∗+s2XΌ−Μ)/B(B0s→XΌ−Μ) = (3.3±1.0±0.4)%, and B(B0s→D+s1XΌ−Μ)/B(B0s→XΌ−Μ) = (5.4±1.2±0.5)%, where the ïŹrst uncertainty is statistical and the second is systematic. This is the ïŹrst observation of the D∗+s2 state in B0s decays; we also measure its mass and width

    A model-independent Dalitz plot analysis of B±→DK± with D→K0Sh+h− (h=π,K) decays and constraints on the CKM angle Îł

    Get PDF
    A binned Dalitz plot analysis of B ±→DK ± decays, with D→KS0π+π- and D→KS0K+K-, is performed to measure the CP-violating observables x ± and y ± which are sensitive to the CKM angle Îł. The analysis exploits 1.0 fb -1 of data collected by the LHCb experiment. The study makes no model-based assumption on the variation of the strong phase of the D decay amplitude over the Dalitz plot, but uses measurements of this quantity from CLEO-c as input. The values of the parameters are found to be x -=(0.0±4.3±1.5±0.6)×10 -2, y -=(2.7±5.2±0.8±2.3)×10 -2, x +=(-10.3±4.5±1.8±1.4)×10 -2 and y +=(-0.9±3.7±0.8±3.0)×10 -2. The first, second, and third uncertainties are the statistical, the experimental systematic, and the error associated with the precision of the strong-phase parameters measured at CLEO-c, respectively. These results correspond to Îł=(44-38+43)°, with a second solution at γ→γ+180°, and r B=0.07±0.04, where r B is the ratio between the suppressed and favoured B decay amplitudes
    • 

    corecore