14 research outputs found

    Воздействие высокой концентрации оксида азота на оксигенаторы аппаратов искусственного кровообращения (экспериментальное исследование)

    Get PDF
    The aim of the study. To study the effect of high nitric oxide concentrations on hollow polypropylene fibers of oxygenators.Materials and methods. The study was conducted in two stages. At the first stage, we evaluated the stability of oxygenator membrane made of hollow polypropylene fibers after six hours of exposure to air-oxygen mixture containing NO at 500 parts per million, or 500 pro pro mille (ppm) concentration, using mass spectrometry and infrared spectroscopy. At the second stage, an experiment with cardiopulmonary bypass (CPB) was conducted on 10 pigs. In the study group (n=5) animals sweep gas was supplied to the oxygenator as an air-oxygen mixture with NO at 100 ppm. In the control group animals (n=5) an air-oxygen mixture was used without NO. The CPB lasted for 4 hours, followed by observation for 12 hours. NO, NO2 (at the inlet and outlet of the oxygenator), and the dynamics of methemoglobin were evaluated. After weaning of animals from CPB, the oxygenators were tested for leakproofness, and scanning electron microscopy (SEM) was performed.Results. The oxygenator made of polypropylene hollow fibers retained its gas transfer parameters after six hours of exposure to air-oxygen mixture containing NO at 500 ppm. Based on IR-Fourier spectroscopy findings, NO did not affect structural integrity of polypropylene membranes. NO added to gas mixture at 100 ppm did not increase NO2 to toxic level of 2 ppm in 91% of control tests during 4 hours CPB in pigs; mean value was 1.58 ± 0.28 ppm. Methemoglobin concentration did not exceed the upper limit of permissible level (3%), and there were no statistically significant differences with the control group. All tested oxygenators have passed the leakproofness test. According to SEM findings, larger amounts of fibrin deposits were found in the control group oxygenators vs study group.Conclusion. There were no negative effects of NO at 500 ppm concentration on the oxygenator membrane made of hollow polypropylene fibers. NO at 100 ppm in a gas-mixture supplied to oxygenators did not lead to an exceedance of safe NO2 and methemoglobin concentrations in an animal model. Reduced fibrin deposits on hollow fibers of polypropylene oxygenator membranes were observed when with NO at a level of 100 ppm was added to a gas mixture.  Цель исследования. Изучить воздействие высоких концентраций оксида азота на полипропиленовые полые волокна оксигенаторов.Материалы и методы. Исследование провели в два этапа. На первом этапе с помощью масс-спектрометрии и инфракрасной спектроскопии выполнили оценку стабильности мембраны оксигенатора из полых волокон полипропилена после шестичасового воздействия воздушно-кислородной смеси, содержащей NO в концентрации 500 пропромилле, или 500 частей на миллион – parts per million (ppm). На втором этапе провели эксперимент на 10 свиньях с подключением аппарата искусственного кровообращения (ИК). Животным основной группы (n=5) в оксигенатор подавали воздушно-кислородную смесь, содержащую NO в концентрации 100 ppm. Животным контрольной группы (n=5) в оксигенатор подавали воздушно-кислородную смесь без NO. Процедура ИК длилась 4 часа, затем следовало наблюдение в течение 12 часов. Оценивали NO, NO2 (на входе и выходе из оксигенатора), динамику метгемоглобина. После отключения от ИК оксигенаторы тестировали на герметичность, а также выполняли сканирующую электронную микроскопию (СЭМ).Результаты. Оксигенатор из полипропиленовых полых волокон сохранял свои газотранспортные характеристики после шестичасового воздействия воздушно-кислородной смеси с добавлением NO в концентрации 500 ppm. По данным ИК-Фурье спектроскопии показали, что NO не влияет на структуру мембран из полипропилена. Добавление NO в дозировке 100 ppm во время 4 часов ИК у свиней не сопровождалось повышением концентрации NO2 до токсичного уровня 2 ppm в 91% измерений: среднее значение составило 1,58 ± 0,28 ppm. Концентрация метгемоглобина не превышала верхнего  предела  допустимых  значений  (3%),  не  обнаружили  каких-либо статистически значимых различий при сравнении с группой контроля. Все исследуемые оксигенаторы выдержали тестирование на герметичность. По результатам СЭМ оксигенаторы группы контроля характеризовались большим количеством отложений фибрина, чем оксигенаторы основной группы.Заключение. Негативного воздействия NO в концентрации 500 ppm на мембраны оксигенаторов из полых волокон полипропилена не обнаружили. Подача в оксигенатор NO в концентрации 100 ppm NO2 не приводила к превышению безопасного содержания NO2 и метгемоглобина в эксперименте на животных. Выявили снижение образования отложений фибрина на полых волокнах мембран оксигенаторов из полипропилена при подаче NO в концентрации 100 ppm

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Acidic Gases Solubility in Bis(2-Ethylhexyl) Sulfosuccinate Based Ionic Liquids Using the Predictive Thermodynamic Model

    No full text
    To properly design ionic liquids (ILs) adopted for gases separation uses, a knowledge of ILs thermodynamic properties as well their solubilities with the gases is essential. In the present article, solubilities of CO2 and H2S in bis(2-Ethylhexyl)sulfosuccinate based ILs were predicted using the conductor like screening model for real solvents COSMO-RS. According to COSMO-RS calculations, the influence of the cation change was extensively analyzed. The obtained data are used for the prediction of adequate solvent candidates. Moreover, to understand the intrinsic behavior of gases solubility the free volume of the chosen ILs and their molecular interactions with respectively CO2 and H2S were computed. The results suggest that hydrogen bonding interactions in ILs and between ILs and the gases have a pivotal influence on the solubility

    Development of quantification methods of a new selective carbonic anhydrase II inhibitor in plasma and blood and study of the pharmacokinetics of its ophthalmic suspension in rats

    No full text
    Introduction: Development of new bioanalytical methods is required for studying the systemic exposure of new selective inhibitor of carbonic anhydrase II, 4-(2-methyl-1,3-oxazole-5-yl)-benzenesulfonamide, and its N-hydroxymetabolite in plasma and in whole blood. The results of the experiment with a single administration of an ophthalmic suspension of the drug are necessary to optimize the subsequent design of a full pharmacokinetic study. Materials and Methods: HPLC-MS/MS method was used to measure a concentration of analytes in plasma and whole blood. Chromatographic separation was performed on the Poroshell 120EC-C18 column (50*3.0 mm, 2.7 µm). Pharmacokinetics was studied on 6 Wistar rats weighing 287.50±18.64 g (Mean±SD). Each animal was instilled with 40 µL of the ophthalmic suspension in concentration of 2% in each eye. Blood samples were collected before administration of the drug and 30 min, 1 h, 1 h 30 min, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h, 24 h, 48 h, and 72 h after administration. Non-compartment approach was used for the evaluation of pharmacokinetic parameters. Results and Discussion: The protein precipitation was chosen for a sample preparation of biological fluids. A solution of ascorbic acid in concentration of 10% was added to plasma, and a solution of sodium thiosulfate in concentration of 10% was added to blood to prevent the degradation of N-hydroxymetabolite of the drug. The analytical range of determination of 4-(2-methyl-1,3-oxazole-5-yl)-benzenesulfonamide and its N-hydroxyderivative in blood was 50-10000 ng/mL and 5-1000 ng/mL, respectively, in plasma – 10-2000 ng/mL and 1-200 ng/mL, respectively. The maximum plasma concentration of the studied drug was 264.32±68.47 ng/mL (Mean±SD) 1.92±0.92 h (Mean±SD) after administration, and its metabolite was 10.43±1.79 ng/mL 2.17±1.13 h after administration. The maximum concentration of the drug in blood reached 8705.23±1301.84 ng/mL (Mean±SD) 1.17±0.52 h (Mean±SD) after administration, and the maximum concentration of N-hydroxymetabolite reached 230.00±69.54 ng/mL (Mean±SD) 1.33±0.41 h (Mean± SD) after administration. Conclusion: The developed methods have been fully validated according to the requirements of Russian and internatonal guidelines and have been successfully used for pharmacokinetic research. It was found that a content of 4-(2-methyl-1,3-oxazole-5-yl)-benzenesulfonamide and its main metabolite in whole blood is significantly higher than in plasma

    Absorption Behavior of Acid Gases in Protic Ionic Liquid/Alkanolamine Binary Mixtures

    No full text
    Herein, we studied the absorption of H<sub>2</sub>S and CO<sub>2</sub> by alkanolamine–protic ionic liquids binary mixtures based on 2-hydroxyethylammonium (MEA) or triethanolammonium cations and residues of 2-hydroxy-5-sulfobenzoic acid or pyridine-3-carboxylic acid at various temperatures and partial gases pressures. It was found that absorbents based on the 2-hydroxyethylammonium cation, performed high absorption properties toward the H<sub>2</sub>S. The solubility of hydrogen sulfide, characterized by the Henry’s Law constant, in MEA-based binary mixtures had the values comparable to the commercially available ionic liquids. The results of thermal desorption analysis demonstrated that the capture of acid gases in MEA-based absorbents occurred at two stages: through the dissolution in MEA component and in protic ionic liquid

    Hydrate-based technique for natural gas processing: Experimental study of pressure-dropping and continuous modes

    No full text
    Gas hydrate crystallization is perspective and energy-efficient technology for gas mixtures processing, including natural gas. There were compared pressure-dropping and continuous gas hydrate crystallization methods for separation of gas mixture closed to natural gas. The studied mixture has been chosen similar to the natural gas composition: CH4 (75.68 mol.%) - С2H6 (7.41 mol.%) - C3H8 (4.53 mol.%) - н-C4H10 (2.47 mol.%) - CO2 (5.40 mol.%) - H2S (1.39 mol.%) - N2 (3.01 mol.%) - Xe (0.11 mol.%). Experiments were provided in the 4 L high pressure reactor, using water solution of SDS (0.20 wt.%). The experiment conditions were 280.15 K and pressure of 4.25 MPa. The components separation factors and recovery for two modes have been researched and compared for choosing more effective options. After comparing these characteristics, it was concluded that continuous process is more productive than pressure-dropping mode. At the stage cut (θ) of 0.9, the gas components total recovery (R) for the continuous mode have exceeded the total recovery for the pressure-dropping mode by 8.15 %, and at θ = 0.8, exceeded by 6.11 %. The recovery and separation factors have the highest values for H2S, C3H8, Xe in the continuous mode: 97.62 %, 94.90 %, 84.98 % and 8.7, 10.53, 6.36, respectively. Thus, the choosing of the more effective stage cut depends on the aim of the process: the highest purity or the largest recovery

    Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    No full text
    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C

    An Efficient Technique for Ammonia Capture in the Haber&ndash;Bosch Process Loop&mdash;Membrane-Assisted Gas Absorption

    No full text
    The present study continues the development and enhancement of a highly efficient unique hybrid technique&mdash;membrane-assisted gas absorption in designing the separation unit, which provides the improvement in mass-transfer of a target component during the ammonia capture process from a process loop of the Haber&ndash;Bosch technological route. In order to minimize the absorbent volume to membrane area ratio, the special separation cell was designed based on a combination of two types of hollow fiber membranes, dense gas separation membrane and porous pervaporation membrane. The separation performance tests were implemented under two sets of conditions, sweeping the bore (permeate) side of a cell with helium and hydrogen-nitrogen mix. For both cases, the membrane-assisted gas absorption cell demonstrated high separation efficiency, and the ammonia concentration in the permeate was never lower than 81 mol%; meanwhile, under the hydrogen-nitrogen bore sweep conditions, the ammonia concentration in the permeate reached 97.5 mol% in a single-step process. Nevertheless, there is a product purity&ndash;recovery rate trade-off, which is a typical issue for separation processes

    The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    No full text
    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S

    The Cation Effect on the Free Volume and the Solubility of H<sub>2</sub>S and CO<sub>2</sub> in Ionic Liquids Based on Bis(2-Ethylhexyl) Sulfosuccinate Anion

    No full text
    Herein, we report for the first time a study dedicated to acidic gases’ solubility in ionic liquids with sterically hindered bulky anion, namely bis(2-ethylhexyl) sulfosuccinate ([doc]), experimentally evaluated at low pressures. The effect of cation change (imidazolium, pyridinium, and pyrrolidinium) on the thermophysical properties and sorption capacities was also discussed. The densities and the activation energies of the tested ILs exhibited minor differences. Furthermore, the COSMO-RS model was used to predict the free volumes of ILs aiming to investigate its influence on gas solubilities. The conducted calculations have revealed an antibate correlation between the fractional free volume (FFV) and Henry’s law constant. In particular, the lowest FFV in 1-methylimidazolium [doc] corresponded to the minimal sorption and vice versa. In addition, it was shown that the presence of protic cation results in a significant reduction in CO2 and H2S solubilities. In general, the solubility measurement results of the synthesized ILs have shown their superiority compared to fluorinated ILs based on the physical absorption mechanism
    corecore