1,954 research outputs found

    Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Get PDF
    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide

    Development of a full hybrid lighting-CPV prototype and savings in a real case operation

    Get PDF
    A full Hybrid lighting-CPV prototype has been assembled. This new concept mixes a classical CPV module with the production of light for illumination without a double conversion (solar energy to electricity and electricity to light) allowing a higher efficiency to the whole system. The present prototype is based on a commercial CPV module that has been adapted in order to be hybrid, adjusting the receivers to pass the fibers into the module, inserting a holder to adjust x,y and z position of the fibers and changing the original parquet of lenses by a bifocal one composed most of the original lenses and the inclusion of other lenses in the position of the corners. Results show that with a minimal loss in the CPV part, a luminous flux is obtained that can be used to illuminate. Adding an additional electrical lamp and a light sensor that enables this lamp when no light from the sun is received, a 38% saving on lighting electricity is expected in Madrid during a year

    Characterization of CPV arrays based on differences on their thermal resistances

    Get PDF
    Thermal characterization of Concentrating Photovoltaics (CPV) modules and Arrays is needed to determine their performance and modelling of energy forecast. Module-ambient thermal resistance is easily obtained from its definition but the cell-module thermal resistant needs to be estimated from indirect procedures, two of them are presented in this paper. In addition, an equivalent parameter is defined, the Concentrator Nominal Operating Module/Cell Temperature (CNOMT/CNOCT), the temperature at Concentrator Standard Operating Conditions (CSOC). Definitions and expression to relate (CNOMT/CNOCT) to thermal resistances are presented, plus several examples of estimations from real operating arrays

    Experimental analysis of a photovoltaic concentrator based on a single reflective stage immersed in an optical fluid

    Get PDF
    This article reviews all the experimental tests carried out to analyze the performance of a FluidReflex photovoltaic concentrator. This novel concentrator concept consists of a single reflective stage immersed in an optical fluid. The presence of the fluid entails significant advantages. It not only allows a high system optical efficiency and increases the attainable concentration but also enhances the heat dissipation from the cell. In addition, the electrical insulation is improved, and the problem of water vapor condensation inside the module is avoided. A complete characterization is addressed in this paper. Among the experimental results, a measured optical efficiency of 83.5% for a concentration of 1035Ă— stands ou

    Durability of dielectric fluids for concentrating photovoltaic systems

    Full text link
    Several dielectric fluids that might be used for immersing optics are analyzed in this paper. Their transmittances, both before and after an accelerated exposure to ultraviolet (UV) radiation equivalent to several years under real sun, are presented. In addition, the photocurrent losses caused by the decrease in transmittance experienced by each fluid are estimated for current III?V multijunction (MJ) solar cells. The most stable fluids were found to be paraffin and silicone oils whose transmittances remained practically unaltered after a UV dosage equivalent to 3 years of AM1.5D radiation

    Methodology of quantifying curvature of Fresnel lenses and its effect on CPV module performance

    Get PDF
    Fresnel lenses used as primary optics in concentrating photovoltaic modules may show warping produced by lens manufacturing or module assembly (e.g., stress during molding or weight load) or due to stress during operation (e.g., mismatch of thermal expansion between different materials). To quantify this problem, a simple method called “checkerboard method” is presented. The proposed method identifies shape errors on the front surface of primary lenses by analyzing the Fresnel reflections. This paper also deals with the quantification of the effects these curvatures have on their optical performance and on the electrical performance of concentrating modules incorporating them. This method can be used to perform quality control of Fresnel lenses in scenarios of high volume production

    Assessment of the optical efficiency of a primary lens to be used in a CPV system

    Get PDF
    This article summarizes experimental methods to evaluate the performance and to assess the efficiency of a lens that will be used as primary optics in a concentrating photovoltaic system comprising multijunction solar cells. The methods are classified into two groups: those intended to quantify the transmission losses and those that estimate the size and shape of the light spot. In addition, the optical efficiency definition is reviewed and a systematic procedure to evaluate it is proposed

    A novel scanning lens instrument for evaluating Fresnel lens performance: equipment development and initial results

    Get PDF
    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses

    Module optical analyzer: Identification of defects on the production line

    Get PDF
    The usefulness of the module optical analyzer when identifying module defects on production line is presented in this paper. Two different case studies performed with two different kind of CPV modules are presented to show the use of MOA both in IES-UPM and Daido Steel facilities

    Experiences with European Low-Concentration PV

    Full text link
    Esta Conferencia se impartiĂł en el "5th ICSC5 International Conference" celebrado en Palm Desert en Noviembre del 2008. Su objetivo es realizar una revisiĂłn de todas las experiencias que se han llevado a cabo en Europa con Sistemas fotovoltaicos de baja y media concentraciĂłn
    • …
    corecore