213 research outputs found

    Conocimiento desde una perspectiva disciplinaria y holistica

    Get PDF
    Versión en inglés disponible en la Biblioteca Digital del IDRC: Disciplinary and holistic approaches to knowledgePublicado también en: Conocimiento sin barreras : propuestas, discusión y síntesi

    Disciplinary and holistic approaches to knowledge

    Get PDF
    Spanish version available in IDRC Digital Library: Conocimiento desde una perspectiva disciplinaria y holistic

    Interacting Open Wilson Lines in Noncommutative Field Theories

    Full text link
    In noncommutative field theories, it was known that one-loop effective action describes propagation of non-interacting open Wilson lines, obeying the flying dipole's relation. We show that two-loop effective action describes cubic interaction among `closed string' states created by open Wilson lines. Taking d-dimensional noncommutative [\Phi^3] theory as the simplest setup, we compute nonplanar contribution at low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on sizes of each open Wilson line.Comment: v1: 27 pages, Latex, 7 .eps figures v2: minor wording change + reference adde

    GEN1 from a thermophilic fungus is functionally closely similar to non-eukaryotic junction-resolving enzymes

    Get PDF
    AbstractProcessing of Holliday junctions is essential in recombination. We have identified the gene for the junction-resolving enzyme GEN1 from the thermophilic fungus Chaetomium thermophilum and expressed the N-terminal 487-amino-acid section. The protein is a nuclease that is highly selective for four-way DNA junctions, cleaving 1nt 3′ to the point of strand exchange on two strands symmetrically disposed about a diagonal axis. CtGEN1 binds to DNA junctions as a discrete homodimer with nanomolar affinity. Analysis of the kinetics of cruciform cleavage shows that cleavage of the second strand occurs an order of magnitude faster than the first cleavage so as to generate a productive resolution event. All these properties are closely similar to those described for bacterial, phage and mitochondrial junction-resolving enzymes. CtGEN1 is also similar in properties to the human enzyme but lacks the problems with aggregation that currently prevent detailed analysis of the latter protein. CtGEN1 is thus an excellent enzyme with which to engage in biophysical and structural analysis of eukaryotic GEN1

    Irreducible holonomy algebras of Riemannian supermanifolds

    Full text link
    Possible irreducible holonomy algebras \g\subset\osp(p,q|2m) of Riemannian supermanifolds under the assumption that \g is a direct sum of simple Lie superalgebras of classical type and possibly of a one-dimensional center are classified. This generalizes the classical result of Marcel Berger about the classification of irreducible holonomy algebras of pseudo-Riemannian manifolds.Comment: 27 pages, the final versio

    The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae

    Get PDF
    Maintenance of the intracellular homeostasis of metal ions is important for the virulence of many bacterial pathogens. Here, we demonstrate that the czcD gene of the human pathogen Streptococcus pneumoniae is involved in resistance against Zn2+, and that its transcription is induced by the transition-metal ions Zn2+, Co2+ and Ni2+. Upstream of czcD a gene was identified, encoding a novel TetR family regulator, SczA, that is responsible for the metal ion-dependent activation of czcD expression. Transcriptome analyses revealed that in a sczA mutant expression of czcD, a gene encoding a MerR-family transcriptional regulator and a gene encoding a zinc-containing alcohol dehydrogenase (adhB) were downregulated. Activation of the czcD promoter by SczA is shown to proceed by Zn2+-dependent binding of SczA to a conserved DNA motif. In the absence of Zn2+, SczA binds to a second site in the czcD promoter, thereby fully blocking czcD expression. This is the first example of a metalloregulatory protein belonging to the TetR family that has been described. The presence in S. pneumoniae of the Zn2+-resistance system characterized in this study might reflect the need for adjustment to a fluctuating Zn2+ pool encountered by this pathogen during infection of the human body

    Thermodynamics of Large-N_f QCD at Finite Chemical Potential

    Full text link
    We extend the previously obtained results for the thermodynamic potential of hot QCD in the limit of large number of fermions to non-vanishing chemical potential. We give exact results for the thermal pressure in the entire range of temperature and chemical potential for which the presence of a Landau pole is negligible numerically. In addition we compute linear and non-linear quark susceptibilities at zero chemical potential, and the entropy at small temperatures. We compare with the available perturbative results and determine their range of applicability. Our numerical accuracy is sufficiently high to check and verify existing results, including the recent perturbative results by Vuorinen on quark number susceptibilities and the older results by Freedman and McLerran on the pressure at zero temperature and high chemical potential. We also obtain a number of perturbative coefficients at sixth order in the coupling that have not yet been calculated analytically. In the case of both non-zero temperature and non-zero chemical potential, we investigate the range of validity of a scaling behaviour noticed recently in lattice calculations by Fodor, Katz, and Szabo at moderately large chemical potential and find that it breaks down rather abruptly at μqπT\mu_q \gtrsim \pi T, which points to a presumably generic obstruction for extrapolating data from small to large chemical potential. At sufficiently small temperatures TμqT \ll \mu_q, we find dominating non-Fermi-liquid contributions to the interaction part of the entropy, which exhibits strong nonlinearity in the temperature and an excess over the free-theory value.Comment: 18 pages, 7 figures, JHEP style; v2: several updates, rewritten and extended sect. 3.4 covering now "Entropy at small temperatures and non-Fermi-liquid behaviour"; v3: additional remarks at the end of sect. 3.4; v4: minor corrections and additions (version to appear in JHEP
    corecore