5,127 research outputs found
Thermal Casimir Effect in the Plane-Sphere Geometry
The thermal Casimir force between two metallic plates is known to depend on
the description of material properties. For large separations the dissipative
Drude model leads to a force a factor of 2 smaller than the lossless plasma
model. Here we show that the plane-sphere geometry, in which current experiment
are performed, decreases this ratio to a factor of 3/2, as revealed by exact
numerical and large distance analytical calculations. For perfect reflectors,
we find a repulsive contribution of thermal photons to the force and negative
entropy values at intermediate distances.Comment: 4 pages, 3 figure
Improved Mean-Field Scheme for the Hubbard Model
Ground state energies and on-site density-density correlations are calculated
for the 1-D Hubbard model using a linear combination of the Hubbard projection
operators. The mean-field coefficients in the resulting linearized Equations of
Motion (EOM) depend on both one-particle static expectation values as well as
static two-particle correlations. To test the model, the one particle
expectation values are determined self-consistently while using Lanczos
determined values for the two particle correlation terms. Ground state energies
and on-site density-density correlations are then compared as a function of
to the corresponding Lanczos values on a 12 site Hubbard chain for 1/2 and 5/12
fillings. To further demonstrate the validity of the technique, the static
correlation functions are also calculated using a similar EOM approach, which
ignores the effective vertex corrections for this problem, and compares those
results as well for a 1/2 filled chain. These results show marked improvement
over standard mean-field techniques.Comment: 10 pages, 3 figures, text and figures as one postscript file -- does
not need to be "TeX-ed". LA-UR-94-294
Tunneling study of cavity grade Nb: possible magnetic scattering at the surface
Tunneling spectroscopy was performed on Nb pieces prepared by the same
processes used to etch and clean superconducting radio frequency (SRF)
cavities. Air exposed, electropolished Nb exhibited a surface superconducting
gap delta=1.55 meV, characteristic of clean, bulk Nb. However the tunneling
density of states (DOS) was broadened significantly. The Nb pieces treated with
the same mild baking used to improve the Q-slope in SRF cavities, reveal a
sharper DOS. Good fits to the DOS were obtained using Shiba theory, suggesting
that magnetic scattering of quasiparticles is the origin of the gapless surface
superconductivity and a heretofore unrecognized contributor to the Q-slope
problem of Nb SRF cavities.Comment: 3 pages, 3 figure
Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio
Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification
Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio
Beginning in 1971 a cooperative program has been carried on by the City of Cleveland Division of Air Pollution Control and NASA Lewis Research Center to study the trace element and compound concentrations in the ambient suspended particulate matter in Cleveland Ohio as a function of source, monitoring location and meteorological conditions. The major objectives were to determine the ambient concentration levels at representative urban sites and to develop a technique using trace element and compound data in conjunction with meteorological conditions to identify specific pollution sources which could be developed into a practical system that could be readily utilized by an enforcement agency
Quantum statistical properties of some new classes of intelligent states associated with special quantum systems
Based on the {\it nonlinear coherent states} method, a general and simple
algebraic formalism for the construction of \textit{`-deformed intelligent
states'} has been introduced. The structure has the potentiality to apply to
systems with a known discrete spectrum as well as the generalized coherent
states with known nonlinearity function . As some physical appearance of
the proposed formalism, a few new classes of intelligent states associated with
\textit{`center of-mass motion of a trapped ion'}, \textit{`harmonious states'}
and \textit{`hydrogen-like spectrum'} have been realized. Finally, the
nonclassicality of the obtained states has been investigated. To achieve this
purpose the quantum statistical properties using the Mandel parameter and the
squeezing of the quadratures of the radiation field corresponding to the
introduced states have been established numerically.Comment: 13page
Relativistic and retardation effects in the two--photon ionization of hydrogen--like ions
The non-resonant two-photon ionization of hydrogen-like ions is studied in
second-order perturbation theory, based on the Dirac equation. To carry out the
summation over the complete Coulomb spectrum, a Green function approach has
been applied to the computation of the ionization cross sections. Exact
second-order relativistic cross sections are compared with data as obtained
from a relativistic long-wavelength approximation as well as from the scaling
of non-relativistic results. For high-Z ions, the relativistic wavefunction
contraction may lower the two-photon ionization cross sections by a factor of
two or more, while retardation effects appear less pronounced but still give
rise to non-negligible contributions.Comment: 6 pages, 2 figure
Rigged Hilbert Space Approach to the Schrodinger Equation
It is shown that the natural framework for the solutions of any Schrodinger
equation whose spectrum has a continuous part is the Rigged Hilbert Space
rather than just the Hilbert space. The difficulties of using only the Hilbert
space to handle unbounded Schrodinger Hamiltonians whose spectrum has a
continuous part are disclosed. Those difficulties are overcome by using an
appropriate Rigged Hilbert Space (RHS). The RHS is able to associate an
eigenket to each energy in the spectrum of the Hamiltonian, regardless of
whether the energy belongs to the discrete or to the continuous part of the
spectrum. The collection of eigenkets corresponding to both discrete and
continuous spectra forms a basis system that can be used to expand any physical
wave function. Thus the RHS treats discrete energies (discrete spectrum) and
scattering energies (continuous spectrum) on the same footing.Comment: 27 RevTex page
- …