6,950 research outputs found

    Fuels research studies at NASA Lewis

    Get PDF
    Fuels research studies carried out in a variety of areas related to aviation propulsion, ground transportation, and stationary power generation systems are discussed. The major efforts are directed to studies on fuels for jet aircraft. These studies involve fuels preparation, fuels analysis, and fuel quality evaluations. The scope and direction of research activities in these areas is discussed, descriptions of Lewis capabilities and facilities given, and results of recent research efforts reported

    Use of petroleum-based correlations and estimation methods for synthetic fuels

    Get PDF
    Correlations of hydrogen content with aromatics content, heat of combustion, and smoke point are derived for some synthetic fuels prepared from oil and coal syncrudes. Comparing the results of the aromatics content with correlations derived for petroleum fuels shows that the shale-derived fuels fit the petroleum-based correlations, but the coal-derived fuels do not. The correlations derived for heat of combustion and smoke point are comparable to some found for petroleum-based correlations. Calculated values of hydrogen content and of heat of combustion are obtained for the synthetic fuels by use of ASTM estimation methods. Comparisons of the measured and calculated values show biases in the equations that exceed the critical statistics values. Comparison of the measured hydrogen content by the standard ASTM combustion method with that by a nuclear magnetic resonance (NMR) method shows a decided bias. The comparison of the calculated and measured NMR hydrogen contents shows a difference similar to that found with petroleum fuels

    Synthesis and analysis of jet fuels from shale oil and coal syncrudes

    Get PDF
    The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products

    Fuels characterization studies

    Get PDF
    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point

    A canonical Frobenius structure

    Full text link
    We show that it makes sense to speak of THE Frobenius manifold attached to a convenient and nondegenerate Laurent polynomialComment: 24 page

    Periodic Modulation of Extraordinary Optical Transmission through Subwavelength Hole Arrays using Surrounding Bragg Mirrors

    Full text link
    The enhanced light transmission through an array of subwavelength holes surrounded by Bragg mirrors is studied, showing that the mirrors act to confine the surface plasmons associated with the Extraordinary Optical Transmission effect, forming a surface resonant cavity. The overall effect is increased light transmission intensity by more than a factor of three beyond the already enhanced transmission, independent of whether the Bragg mirrors are on the input or the output side of the incident light. The geometry of the Bragg mirror structures controls the enhancement, and can even reduce the transmission in half. By varying these geometric parameters, we were able to periodically modulate the transmission of light for specific wavelengths, consistent with the propagation and interference of surface plasmon waves in a resonant cavity. FDTD simulations and a wave propagation model verify this effect.Comment: 9 pages, 5 figure

    Evaluation of the application of some gas chromatographic methods for the determination of properties of synthetic fuels

    Get PDF
    The purpose of the investigation was to evaluate the applicability, to some synthetic fuels, of some gas chromatographic methods now under development for use with petroleum based fuels. Thirty-two jet and diesel fuel samples which were prepared from oil shale and coal syncrudes were examined. The boiling range distribution of each was determined by gas chromatography, and from that data distillation properties were calculated. The calculated results gave sufficient agreement with the measured values that the equations could be useable in their present form. Bulk fuel properties were calculated for the sixteen JP-5 and Diesel No. 2 type fuels. The results show that the equations would not give useable results. Capillary column gas chromatography was used to determine the n-alkane content of the eight JP-5 type samples and the results related to the observed freezing points. The results show that the concentrations of the long straight chain molecules in the fuels exert influence on the freezing point but are not the complete controlling factor

    Thermodynamic properties of liquid metal solutions in the sodium-mercury system at 200 deg C

    Get PDF
    Thermodynamic properties of liquid metal solutions in sodium-mercury system at high temperatur

    Quantum critical properties of the Bose-Fermi Kondo Model in a large-N limit

    Full text link
    Studies of non-Fermi liquid properties in heavy fermions have led to the current interest in the Bose-Fermi Kondo model. Here we use a dynamical large-N approach to analyze an SU(N)xSU(κN\kappa N) generalization of the model. We establish the existence in this limit of an unstable fixed point when the bosonic bath has a sub-ohmic spectrum (|\omega|^{1-\epsilon} \sgn \omega, with 0<ϵ<10<\epsilon<1). At the quantum critical point, the Kondo scale vanishes and the local spin susceptibility (which is finite on the Kondo side for \kappa <1) diverges. We also find an \omega/T scaling for an extended range (15 decades) of \omega/T. This scaling violates (for ϵ≥1/2\epsilon \ge 1/2) the expectation of a naive mapping to certain classical models in an extra dimension; it reflects the inherent quantum nature of the critical point.Comment: 4 pages; v2: included clarifying discussions on why the omega/T scaling (for epsilon >=1/2) violates the naive mapping to classical models in an extra dimension and the implications of this observation about the nature of the QCP; v3: shortened to conform to the PRL length limi
    • …
    corecore