83 research outputs found

    What is New on the Sun?

    Get PDF
    A fundamental property of the Sun's corona is that it is violently dynamic. The most spectacular and most energetic manifestations of this activity are the giant magnetic disruptions that give rise to coronal mass ejections (CME) and eruptive flares. These major events are of critical importance, because they drive the most destructive forms of space weather at Earth and in the solar system, and they provide a unique opportunity to study, in revealing detail, the interaction of magnetic field and matter, in particular, magnetohydrodynamic instability and nonequilibrium - processes that are at the heart of laboratory and astrophysical plasma physics. Recent observations by a number of NASA space missions have given us new insights into the physical mechanisms that underlie coronal explosions. Furthermore, massively-parallel computations have now allowed us to calculate fully three-dimensional models for the Sun's activity. In this talk I will review some of the latest observations of the Sun, including those from the just-launched Hinode and STEREO mission, and discuss recent advances in the theory and modeling of explosive solar activity

    The Structure of Coronal Loops

    Get PDF
    It is widely believed that the simple coronal loops observed by XUV imagers, such as EIT, TRACE, or XRT, actually have a complex internal structure consisting of many (perhaps hundreds) of unresolved, interwoven "strands". According to the nanoflare model, photospheric motions tangle the strands, causing them to reconnect and release the energy required to produce the observed loop plasma. Although the strands, themselves, are unresolved by present-generation imagers, there is compelling evidence for their existence and for the nanoflare model from analysis of loop intensities and temporal evolution. A problem with this scenario is that, although reconnection can eliminate some of the strand tangles, it cannot destroy helicity, which should eventually build up to observable scales. we consider, therefore, the injection and evolution of helicity by the nanoflare process and its implications for the observed structure of loops and the large-scale corona. we argue that helicity does survive and build up to observable levels, but on spatial and temporal scales larger than those of coronal loops. we discuss the implications of these results for coronal loops and the corona, in general

    Cross-Scale Coupling in the Solar Atmosphere

    Get PDF
    For understanding and eventually predicting solar activity, the fundamental question that Solar-C must answer is: How does energy transfer from the large-scales at which it is injected into the solar atmosphere to the small scales at which it is dissipated? We show that this question of cross-scale coupling is fundamental to all activity, ranging from the smallest nanoflares that are postulated to power coronal heating and solar wind acceleration, to the largest coronal mass ejections and eruptive flares. For the solar atmosphere, the most important process that actually dissipates the energy is believed to be magnetic reconnection. We present results on recent calculations of reconnection in a variety of solar contexts and focus on the coupling between kinetic and MHD scales during reconnection. We discuss the implications of our results for present data and for future observations from Solar-C

    Current Sheets in the Corona and the Complexity of Slow Wind

    Get PDF
    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests

    Numerical simulation of solar coronal magnetic fields

    Get PDF
    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity

    LOOPREF: A Fluid Code for the Simulation of Coronal Loops

    Get PDF
    This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss
    corecore