183 research outputs found

    Anti-apolipoprotein A-1 IgG, incident cardiovascular events, and lipid paradox in rheumatoid arthritis.

    Get PDF
    OBJECTIVE To validate the prognostic accuracy of anti-apolipoprotein A-1 (AAA1) IgG for incident major adverse cardiovascular (CV) events (MACE) in rheumatoid arthritis (RA) and study their associations with the lipid paradox at a multicentric scale. METHOD Baseline AAA1 IgG, lipid profile, atherogenic indexes, and cardiac biomarkers were measured on the serum of 1,472 patients with RA included in the prospective Swiss Clinical Quality Management registry with a median follow-up duration of 4.4 years. MACE was the primary endpoint defined as CV death, incident fatal or non-fatal stroke, or myocardial infarction (MI), while elective coronary revascularization (ECR) was the secondary endpoint. Discriminant accuracy and incidence rate ratios (IRR) were respectively assessed using C-statistics and Poisson regression models. RESULTS During follow-up, 2.4% (35/1,472) of patients had a MACE, consisting of 6 CV deaths, 11 MIs, and 18 strokes; ECR occurred in 2.1% (31/1,472) of patients. C-statistics indicated that AAA1 had a significant discriminant accuracy for incident MACE [C-statistics: 0.60, 95% confidence interval (95% CI): 0.57-0.98, p = 0.03], mostly driven by CV deaths (C-statistics: 0.77; 95% CI: 0.57-0.98, p = 0.01). IRR indicated that each unit of AAA1 IgG increase was associated with a fivefold incident CV death rate, independent of models' adjustments. At the predefined and validated cut-off, AAA1 displayed negative predictive values above 97% for MACE. AAA1 inversely correlated with total and HDL cholesterol. CONCLUSIONS AAA1 independently predicts CV deaths, and marginally MACE in RA. Further investigations are requested to ascertain whether AAA1 could enhance CV risk stratification by identifying patients with RA at low CV risk

    A 6 day course of liposomal amphotericin B in the treatment of infantile visceral leishmaniasis: the Italian experience

    Get PDF
    OBJECTIVES: To evaluate in a retrospective analysis the efficacy and safety of a 6 day course of liposomal amphotericin B (L-AmB) in infantile cases of Mediterranean visceral leishmaniasis (VL) diagnosed over a 10 year period in Italy. PATIENTS AND METHODS: Patients included were diagnosed as having VL consecutively admitted from December 1992 to December 2001 at four main referral children's hospitals in Italy and treated with six intravenous doses of 3 mg/kg L-AmB given on days 1-5 and 10 (a total dose of 18 mg/kg). Demographic data, nutritional status, underlying diseases, clinical and laboratory findings, and therapy outcome were considered. RESULTS: A total of 164 HIV-negative children (median age 1.6 years; range 4 months to 14 years) were enrolled. All patients were initially cured by the given treatment, and did not present adverse events related to drug infusion. Seven patients (4.3%) had a clinical and parasitological relapse 3-15 months after therapy. All relapses were successfully retreated with 3 mg/kg L-AmB for 10 consecutive days (a total dose of 30 mg/kg). CONCLUSIONS: This study highlights the efficacy (>95%) and safety of the six dose L-AmB regimen and validates it as a first-line treatment for Mediterranean VL in children

    Clinical use of polymerase chain reaction performed on peripheral blood and bone marrow samples for the diagnosis and monitoring of visceral leishmaniasis in HIV-infected and HIV-uninfected patients: a single-center, 8-year experience in Italy and review of the literature

    Get PDF
    Background. To overcome some of the limitations of conventional microbiologic techniques, polymerase chain reaction (PCR)–based assays are proposed as useful tools for the diagnosis of visceral leishmaniasis. Patients and methods. A comparative study using conventional microbiologic techniques (i.e., serologic testing, microscopic examination, and culture) and a Leishmania species–specific PCR assay, using peripheral blood and bone marrow aspirate samples as templates, was conducted during an 8-year period. The study cohort consisted of 594 Italian immunocompetent (adult and pediatric) and immunocompromised (adult) patients experiencing febrile syndromes associated with hematologic alterations and/or hepatosplenomegaly. Identification of the infecting protozoa at the species level was directly obtained by PCR of peripheral blood samples, followed by restriction fragment–length polymorphism analysis of the amplified products, and the results were compared with those of isoenzyme typing of Leishmania species strains from patients, which were isolated in vitro. Results. Sixty-eight patients (11.4%) had a confirmed diagnosis of visceral leishmaniasis. Eleven cases were observed in human immunodeficiency virus (HIV)–uninfected adults, 20 cases were observed in HIV-infected adults, and the remaining 37 cases were diagnosed in HIV-uninfected children. In the diagnosis of primary visceral leishmaniasis, the sensitivities of the Leishmania species–specific PCR were 95.7% for bone marrow aspirate samples and 98.5% for peripheral blood samples versus sensitivities of 76.2%, 85.5%, and 90.2% for bone marrow aspirate isolation, serologic testing, and microscopic examination of bone marrow biopsy specimens, respectively. None of 229 healthy blood donors or 25 patients with imported malaria who were used as negative control subjects had PCR results positive for Leishmania species in peripheral blood samples (i.e., specificity of Leishmania species– specific PCR, 100%). PCR and restriction fragment–length polymorphism analysis for Leishmania species identification revealed 100% concordance with isoenzyme typing in the 19 patients for whom the latter data were available. Conclusions. PCR assay is a highly sensitive and specific tool for the diagnosis of visceral leishmaniasis in both immunocompetent and immunocompromised patients and can be reliably used for rapid parasite identification at the species level

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death

    Get PDF
    : The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways

    Pathogen-sugar interactions revealed by universal saturation transfer analysis

    Get PDF
    Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    • 

    corecore