19 research outputs found

    Ho-1 modulates aerobic glycolysis through ldh in prostate cancer cells

    Get PDF
    Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.Fil: Cascardo, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Anselmino, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Paez, Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Labanca, Estefania. Md Anderson Cancer Center; Estados UnidosFil: Sanchis, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Navone, Nora. Md Anderson Cancer Center; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel

    Get PDF
    Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.Fil: Labanca, Estefania. University of Texas; Estados UnidosFil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sanchis, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Anselmino, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yang, Jun. University of Texas; Estados UnidosFil: Shepherd, Peter D. A.. University of Texas; Estados UnidosFil: Paez, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lage Vickers, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Hoang, Anh G.. University of Texas; Estados UnidosFil: Tang, Ximing. University of Texas; Estados UnidosFil: Raso, Maria Gabriela. University of Texas; Estados UnidosFil: Titus, Mark. University of Texas; Estados UnidosFil: Efstathiou, Eleni. University of Texas; Estados UnidosFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Araujo, John. University of Texas; Estados UnidosFil: Logothetis, Christopher. University of Texas; Estados UnidosFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Navone, Nora. University of Texas; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    New Algorithm to Determine True Colocalization in Combination with Image Restoration and Time-Lapse Confocal Microscopy to Map Kinases in Mitochondria

    Get PDF
    The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images

    Tumor Cell Phenotype Is Sustained by Selective MAPK Oxidation in Mitochondria

    Get PDF
    Mitochondria are major cellular sources of hydrogen peroxide (H2O2), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H2O2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H2O2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H2O2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 µM H2O2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 µM H2O2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H2O2 level. Like this, high H2O2 or directed mutation of redox-sensitive ERK2 Cys214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H2O2 yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype

    Proliferation mechanisms dependent on cellular redox state: role of Akt and other kinases involved in cell cycle progression

    Get PDF
    En las últimas décadas se demostró que la producción transitoria de peróxido de hidrógeno (H2O2) constituye un evento muy importante de señalización disparado a través de la activación de receptores de superficie o determinado por el estado metabólico mitocondrial, y que modula el grado de fosforilación de determinadas proteínas. En este contexto, estudios recientes han confirmado la presencia de kinasas en la mitocondria que hemos interpretado como un mecanismo modulatorio en la disponibilidad celular de las kinasas. Las mitocondrias normales poseen la mayor concentración celular de ATP y H2O2 en el estado estacionario y contribuyen naturalmente al grado de fosforilación y oxidación de proteínas, dos modificaciones post-traduccionales centrales en la activación de las kinasas. Sobre estas bases, formulamos la hipótesis que el estado redox produce efectos celulares diferenciales en consonancia con la activación de Akt1 y ERK1/2 en la mitocondria, y que en este compartimiento, el H2O2 determina cambios conformacionales que favorecen la fosforilación y posterior translocación nuclear de las mismas. Los estudios realizados en esta Tesis confirmaron que: 1) en la línea celular NIH/3T3, el H2O2 efectivamente modula la progresión del ciclo celular a través de la oxidación y fosforilación selectiva de Akt1 en mitocondrias; 2) en la línea tumoral LP07, el H2O2 asimismo promueve la oxidación selectiva de ERK1/2 o p38-JNK1/2 y posterior translocación al núcleo con efectos ulteriores en la proliferación celular; y 3) el sistema de tiorredoxinas (Trx) modula el destino celular regulando el nivel de oxidantes en las líneas celulares y provocando una activación selectiva en el eje central de Akt1 en el modelo tumoral analizado in vivo. En la línea NIH/3T3, la modulación por H2O2 involucró la entrada de P-Akt1 Ser473 a las mitocondrias, donde fue fosforilada en Thr308 por PDK1. A concentración celular limitada de H2O2, la fosforilación de Akt1 en Thr308 en mitocondrias fue significativa, determinó su pasaje al núcleo y disparó mecanismos genómicos que favorecieron la proliferación celular. En cambio, a elevadas concentraciones de H2O2, la asociación Akt1-PDK1 fue interrumpida y P-Akt1 Ser473 fue retenida en la mitocondria en detrimento de su translocación nuclear. La actividad disminuida de Akt1 favoreció la liberación de citocromo c al citosol conduciendo a la apoptosis. Los efectos diferenciales en la interacción Akt1-PDK1 dependieron de la oxidación selectiva de la Cys310 de Akt1 a ácido sulfénico y sulfónico. Las respuestas celulares observadas en la línea tumoral LP07 involucraron la activación selectiva de ERK1/2 y la interacción eficiente con MEK1/2 determinada por la oxidación de cisteínas conservadas pertenecientes a dominios redox sensibles. Estas modificaciones post-traduccionales que tuvieron lugar en la mitocondria determinaron el pasaje de la kinasa al núcleo. Considerando que las mitocondrias tumorales son disfuncionales, su incapacidad para incrementar la producción de H2O2 podría interrumpir la oxidación sincronizada de ERK1/2 y la regulación del ciclo celular causando la persistencia del fenotipo proliferante. En el mismo modelo tumoral analizado in vivo, el silenciamiento de Trx1 y 2 fue capaz de revertir el efecto de las condiciones redox proliferativas por una activación diferencial de Akt1. Los resultados obtenidos indicaron que al revertir la baja condición redox proliferante, P-Akt1 Ser473 aumentó en la mitocondria en detrimento de la translocación al núcleo, mientras que en los tumores que exhibieron bajo H2O2, P-Akt1 Ser473 se encontró predominantemente en el núcleo, sugiriendo una marcada modulación en la activación de la kinasa y su posterior translocación al núcleo. En esta Tesis, se demuestra el rol central del H2O2 en la activación y tráfico mitocondrial de Akt1 y ERK1/2 en la progresión del ciclo celular. Se concluye que la localización subcelular de estas kinasas en mitocondrias aporta un nuevo modelo para explicar la regulación de la activación por la oxidación de cisteínas específicas y la fosforilación en los residuos correspondientes. De esta forma, el ciclo intramitocondrial de Akt1 y ERK1/2 constituye un eje central para la modulación redox del destino celular en células normales o tumorales.Over the last decades, it has been demonstrated that the transitory production of hydrogen peroxide (H2O2) constitutes a very important event in signaling that can be triggered by activation of surface receptors or determined by mitochondrial metabolic state, and that modulates the phosphorylation level of certain proteins. In this context, recent studies have confirmed the presence of kinases in the mitochondria that we interpreted as a modulatory mechanism in the cellular availability of the kinases. Normal mitochondria have the major cellular ATP and H2O2 steady state concentrations and naturally contribute to the phosphorylation level and protein oxidation, two main postranslational modifications in the activation of kinases. On these bases, we postulated the hypothesis that redox state produces differential cellular effects in accord to Akt1 and ERK1/2 activation in mitochondria, and that in this compartment, H2O2 determines conformational changes that favor their phosphorylation and subsequent nuclear translocation. The studies performed in this Thesis confirmed that: 1) in NIH/3T3 cell line, H2O2 effectively modulates cell cycle progression through the oxidation and selective phosphorylation of Akt1 in mitochondria; 2) in the tumoral cell line LP07, H2O2 promotes as well the selective oxidation of ERK1/2 or p38-JNK1/2 and further translocation to nucleus with later effects in cell proliferation; and 3) the thiorredoxin system (Trx) modulates cell fate regulating the oxidant level and inducing a selective activation in the central axis of Akt1 in the tumoral model analyzed in vivo. In NIH/3T3 cell line, the modulation by H2O2 involved the entrance of P-Akt1 Ser473 to mitochondria, where it was phosphorylated in Thr308 by PDK1. At H2O2 cellular limiting concentrations, the phosphorylation of Akt1 in Thr308 in mitochondria was pronounced, determined its passage to nucleus and triggered genomic mechanisms that favoured cell proliferation. Oppositely, at higher H2O2 concentrations, Akt1-PDK1 association was disrupted and P-Akt1 Ser473 was retained in mitochondria in detriment of its nuclear translocation. Akt1 low activity favoured the release of cytochrome c to cytosol triggering apoptosis. The differential effects in Akt1-PDK1 interaction depended on the selective oxidation of Cys310 in Akt1 to sulfenic and sulfonic acid. The cellular responses observed in LP07 cell line engaged the selective activation of ERK1/2 and the efficient interaction with MEK1/2 determined by the oxidation of conserved cysteines belonging to redox sensitive domains. These postranslational modifications that took place in mitochondria determined the passage to nucleus. Considering that tumoral mitochondria are dysfunctional, the incapacity to increase H2O2 concentration could disrupt the synchronized oxidation of ERK1/2 and the regulation of cell cycle causing the persistence of the proliferative phenotype. In the same tumoral model analyzed in vivo, Trx1 and 2 silencing was able to revert the effect of redox proliferative conditions by a differential activation of Akt1. The obtained results indicated that in these conditions P-Akt1 Ser473 increased in mitochondria instead of translocating to nucleus, while in tumors with low H2O2 condition, P-Akt1 Ser473 was found predominantly in nucleus, suggesting a pronounced modulation in the activation and translocation of the kinase. In this Thesis, we demonstrated the key role of H2O2 in the activation and mitochondrial traffic of Akt1 and ERK1/2 in cell cycle progression. We conclude that the subcelullar localization of these kinases in mitochondria provides a new model to explain the regulation of the activation by oxidation of specific cysteines and the phosphorylation in the corresponding residues. In this sense, the intramitochondrial cycle of Akt1 and ERK1/2 constitutes a central axis for the redox modulation of cell fate in normal and tumoral cells.Fil:Antico Arciuch, Valeria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Role of RSUME in inflammation and cáncer

    Get PDF
    RSUME (for RWD-domain-containing sumoylation enhancer), RWDD3 gene, was identified from a pituitary tumor cell with increased tumorigenic and angiogenic potential, and has higher expression in cerebellum, pituitary, heart, kidney, liver, pancreas, adrenal gland and prostate. RSUME is induced by cellular stress like hypoxia and heat shock, and is increased in pituitary tumors, in gliomas and in VHL tumors. Seven splicing forms have been described. Two of them correspond to non-coding RNAs and the other five possess an RWD domain in the N-terminus and differ in their C-terminal end. RSUME enhances SUMO conjugation by interacting with the SUMO conjugase Ubc9, increases Ubc9 thioester formation and therefore favors sumoylation of specific targets. RSUME increases IκB levels and stabilizes HIF-1α during hypoxia, leading to inhibition of NF-κB and increased HIF-1 transcriptional activity. RSUME inhibits pVHL function, thus suppressing HIF-1 and 2α ubiquitination and degradation. Disruption of the RWD domain structure of RSUME indicated that this domain is critical for RSUME action. The findings point to an important role of RSUME in the regulation and stability of specific targets, which are key regulatory mediators in cancer and inflammation.Fil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; ArgentinaFil: Tedesco, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; ArgentinaFil: Fuertes, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; ArgentinaFil: Arzt, Eduardo Simon. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    Altered Signaling Pathways in Prostate Cancer Drive Metabolic Fate

    No full text
    Prostate cancer is one of the leading causes of men death worldwide. Several signaling pathways are highly implicated in the progression of this disease. Interestingly, variations in a single gene can orchestrate changes in a metabolic pathway and thus, confer an adaptive advantage. Metabolic reprogramming has emerged as one of the hallmarks of cancer and arises as consequence of changes in critical signaling pathways provoked by balance disruption between oncogenes and tumor suppressors expression. Therefore, metabolomic analyses provide relevant information that is not available with only genomic or proteomic studies. Noticeably, basal energetic status in luminal epithelial cells of the prostate gland contrasts with other tissues since Krebs cycle is altered so as to generate high citrate levels achieving a more glycolytic phenotype. Furthermore, the altered signaling pathways in prostate cancer depict changes in cellular metabolism that support the demands of rapid cell division. Particularly, metabolic pathways significantly altered in this malignancy are glutaminolysis and lipid metabolism that contribute directly to the production of acetyl-CoA and NADPH required for the synthesis of fatty acids. Therefore, deciphering the metabolic rewiring propelled by signaling pathways dysregulation is vital for the development of new therapeutic approaches in prostate cancer. Advances in these fields highlight the importance of changes in energetic metabolism during the progression to castration resistant prostate cancer and bone metastases.Fil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Mitochondrial kinases in cell signaling: Facts and perspectives

    Get PDF
    Phylogenetic studies had shown that evolution of mitochondria occurred in parallel with the maturation of kinases implicated in growth and final size of modern organisms. In the last years, different reports confirmed that MAPKs, Akt, PKA and PKC are present in mitochondria, particularly in the intermembrane space and inner membrane where they meet mitochondrial constitutive upstream activators. Although a priori phosphorylation is the apparent aim of translocation, new perspectives indicate that kinase activation depends on redox status as determined by the mitochondrial production of oxygen species. We observed that the degree of mitochondrial oxidation of ERK Cys38 and Cys214 discriminates the kinase to be phosphorylated and determines translocation to the nuclear compartment and proliferation, or accumulation in mitochondria and arrest. Otherwise, transcriptional gene regulation by Akt depends on Cys60 and Cys310 oxidation to sulfenic and sulfonic acids. It is concluded that the interactions between kinases and mitochondria control cell signaling pathways and participate in the modulation of cell proliferation and arrest, tissue protection, tumorigenesis and cancer progression.Fil: Antico Arciuch, Valeria Gabriela. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Alippe, Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Carreras, Maria Cecilia. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Poderoso, Juan José. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentin

    Establishment and characterization of cell lines from a novel mouse model of poorly differentiated thyroid carcinoma: powerful tools for basic and preclinical research.

    No full text
    Poorly differentiated and anaplastic thyroid carcinomas have a rather poor prognosis. The development of relevant model systems to unravel in vitro and in vivo the molecular mechanisms governing the resistance of these tumors to therapy, as well as to test novel drug combinations, is a clear priority for thyroid-focused research. Several novel cell lines were established from tumors developed by mice engineered to simultaneously express a loss-of-function Pten allele and an oncogenic Kras allele. Similar to most poorly differentiated thyroid tumors, these cell lines are characterized by simultaneous activation of the PI3K and MAPK pathways, by the presence of wild-type, functional p53, and by the severe downregulation of thyroid differentiation markers, including sodium-iodide symporter (NIS). Further, they display a highly glycolytic phenotype. They can be grafted to syngeneic, immunocompetent hosts, and easily metastasize to the lungs. These mouse cell lines are a novel and invaluable tool that can be used to develop innovative therapeutic approaches to poorly differentiated carcinomas in a more physiological context than using xenografts of human cell lines in immunocompromised mice
    corecore