260 research outputs found

    Selenium in Diketopyrrolopyrrole-based Polymers: Influence on Electronic Properties and Charge Carrier Mobilities

    Get PDF
    Cataloged from PDF version of article.Diketopyrrolopyrrole (DPP)-based pi-conjugated copolymers with thiophene have exceptionally high electron mobilities. This paper investigates electronic properties and charge carrier mobilities of selenophene containing analogues. Two new copolymers, with alternating thiophene DPP (TDPP) and selenophene DPP (SeDPP) units, were synthesized. Two side-chains, hexyl (Hex) and triethylene glycol (TEG) were employed, yielding polymers designated as PTDPPSeDPP-Hex and PTDPPSeDPP-TEG. Selenophene systems have smaller band gaps, with concomitant enhancement of the stability of the reduced state. For both polymers, ambipolar mobilities were observed in organic field-effect transistors (OFET). Grazing incidence X-ray diffraction (GIXD) data indicates preferential edge-on orientation of PTDPPSeDPP-TEG, which leads to superior charge transport properties of the TEG substituted polymer, as compared to its Hex analogue. Time-dependent-density functional theory (TDDFT) calculations corroborate the decrease in the optical band gap with the inclusion of selenophene. Ambipolar charge transport is rationalized by exceptionally wide conduction bands. Delta SCF calculations confirm the larger electron affinity, and therefore the greater stability, of the reduced form of the selenophene-containing DPP polymer in presence of chloroform

    Ternary organic photodetectors based on pseudo–binaries nonfullerene–based acceptors

    Get PDF
    The addition of a third component to a donor:acceptor blend is a powerful tool to enhance the power conversion efficiency of organic solar cells. Featuring a similar operating mechanism, organic photodetectors are also expected to benefit from this approach. Here, we fabricated ternary organic photodetectors, based on a polymer donor and two nonfullerene acceptors, resulting in a low dark current of 0.42 nA cm−2 at −2 V and a broadband specific detectivity of 1012 Jones. We found that exciton recombination in the binary blend is reduced in ternary devices due to the formation of a pseudo-binary microstructure with mixed donor–acceptor phases. With this approach a wide range of intermediate open-circuit voltages is accessible, without sacrificing light-to-current conversion. This results in ternary organic photodetector (TOPD) with improved Responsivity values in the near-infrared. Moreover, morphology analyses reveal that TOPD devices showed improved microstructure ordering and consequentially higher charge carrier mobilities compared to the reference devices

    Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we fing out?

    Get PDF
    Cataloged from PDF version of article.The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V-1 s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer

    Colossal Tunneling Electroresistance in Co-Planar Polymer Ferroelectric Tunnel Junctions

    No full text
    Ferroelectric tunnel junctions (FTJs) are ideal resistance-switching devices due to their deterministic behavior and operation at low voltages. However, FTJs have remained mostly as a scientific curiosity due to three critical issues: lack of rectification in their current-voltage characteristic, small tunneling electroresistance (TER) effect, and absence of a straightforward lithography-based device fabrication method that would allow for their mass production. Co-planar FTJs that are fabricated using wafer-scale adhesion lithography technique are demonstrated, and a bi-stable rectifying behavior with colossal TER approaching 106% at room temperature is exhibited. The FTJs are based on poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)], and employ asymmetric co-planar metallic electrodes separated by &lt;20 nm. The tunneling nature of the charge transport is corroborated using Simmons direct tunneling model. The present work is the first demonstration of functional FTJs manufactured via a scalable lithography-based nano-patterning technique and could pave the way to new and exciting memory device concepts.</p
    corecore