12 research outputs found

    Chlorophyll a

    No full text

    An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina

    Get PDF
    AbstractElectron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron–sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P740+ and the iron–sulphur centres. The distance between P740+ and Q− was estimated within point-dipole approximation as 25.23±0.05Å, by the analysis of the electron spin echo envelope modulation

    Thermal effects of tissue optics in symbiont-bearing reef-building corals

    No full text
    Reflectance spectroscopy and microscale temperature measurements were used to investigate links between optical and thermal properties of corals. Coral tissue heating showed a species-specific linear correlation to the absorptance of incident irradiance. Heat budgets estimated from absorptance and thermal boundary layer measurements indicated differences in the relative contribution of convection and conduction to heat loss in Porites lobata and Stylophora pistillata, and a higher heat conduction into the skeleton of the thin-tissued branching S. pistillata as compared to the massive thick-tissued P. lobata. Decreasing absorptance associated with bleaching resulted in decreased surface warming of coral tissue. Action spectra of coral tissue heating showed elevated efficiency of heating at wavelengths corresponding to absorption maxima of major zooxanthellae photopigments. Generally, energy-rich radiation (< 500 nm) showed the highest heating efficiency. Species specific relationships between coral tissue heating and absorptance can be strongly affected by differences in the thermal properties of the skeleton and/or tissue arrangement within the skeletal matrix, indicating a yet unresolved potential for coral shape, size, and tissue thickness to affect heat dissipation and especially the conduction of heat into the coral skeleton. © 2012, by the Association for the Sciences of Limnology and Oceanography, Inc

    The in situ light microenvironment of corals

    No full text
    We used a novel diver-operated microsensor system to collect in situ spectrally resolved light fields on corals with a micrometer spatial resolution. The light microenvironment differed between polyp and coenosarc tissues with scalar irradiance (400–700 nm) over polyp tissue, attenuating between 5.1- and 7.8-fold from top to base of small hemispherical coral colonies, whereas attenuation was at most 1.5-fold for coenosarc tissue. Fluctuations in ambient solar irradiance induced changes in light and oxygen microenvironments, which were more pronounced and faster in coenosarc compared with polyp tissue. Backscattered light from the surrounding benthos contributed > 20% of total scalar irradiance at the coral tissue surface and enhanced symbiont photosynthesis and the local O2 concentration, indicating an important role of benthos optics for coral ecophysiology. Light fields on corals are species and tissue specific and exhibit pronounced variation on scales from micrometers to decimeters. Consequently, the distribution, genetic diversity, and physiology of coral symbionts must be coupled with the measurements of their actual light microenvironment to achieve a more comprehensive understanding of coral ecophysiology.Published versio

    Microenvironment and phylogenetic diversity of <i>Prochloron</i> inhabiting the surface of crustose didemnid ascidians

    No full text
    The cyanobacterium Prochloron didemni is primarily found in symbiotic relationships with various marine hosts such as ascidians and sponges. Prochloron remains to be successfully cultivated outside of its host, which reflects a lack of knowledge of its unique ecophysiological requirements. We investigated the microenvironment and diversity of Prochloron inhabiting the upper, exposed surface of didemnid ascidians, providing the first insights into this microhabitat. The pH and O2 concentration in this Prochloron biofilm changes dynamically with irradiance, where photosynthetic activity measurements showed low light adaptation (Ek ∼80±7μmol photons m-2s-1) but high light tolerance. Surface Prochloron cells exhibited a different fine structure to Prochloron cells from cloacal cavities in other ascidians, the principle difference being a central area of many vacuoles dissected by single thylakoids in the surface Prochloron. Cyanobacterial 16S rDNA pyro-sequencing of the biofilm community on four ascidians resulted in 433 operational taxonomic units (OTUs) where on average -85% (65-99%) of all sequence reads, represented by 136 OTUs, were identified as Prochloron via blast search. All of the major Prochloron-OTUs clustered into independent, highly supported phylotypes separate from sequences reported for internal Prochloron, suggesting a hitherto unexplored genetic variability among Prochloron colonizing the outer surface of didemnids
    corecore