119 research outputs found

    Global distribution of a chlorophyll f cyanobacterial marker

    Get PDF
    Some cyanobacteria use light outside the visible spectrum for oxygenic photosynthesis. The far-red light (FRL) region is made accessible through a complex acclimation process that involves the formation of new phycobilisomes and photosystems containing chlorophyll f. Diverse cyanobacteria ranging from unicellular to branched-filamentous forms show this response. These organisms have been isolated from shaded environments such as microbial mats, soil, rock, and stromatolites. However, the full spread of chlorophyll f-containing species in nature is still unknown. Currently, discovering new chlorophyll f cyanobacteria involves lengthy incubation times under selective far-red light. We have used a marker gene to detect chlorophyll f organisms in environmental samples and metagenomic data. This marker, apcE2, encodes a phycobilisome linker associated with FRL-photosynthesis. By focusing on a far-red motif within the sequence, degenerate PCR and BLAST searches can effectively discriminate against the normal chlorophyll a-associated apcE. Even short recovered sequences carry enough information for phylogenetic placement. Markers of chlorophyll f photosynthesis were found in metagenomic datasets from diverse environments around the globe, including cyanobacterial symbionts, hypersaline lakes, corals, and the Arctic/Antarctic regions. This additional information enabled higher phylogenetic resolution supporting the hypothesis that vertical descent, as opposed to horizontal gene transfer, is largely responsible for this phenotype’s distribution

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts

    Get PDF
    Endolithic true fungi and fungus-like microorganisms penetrate calcareous substrates formed by living organisms, cause significant bioerosion and are involved in diseases of many host animals in marine ecosystems. A theoretical interactive model for the ecology of reef-building corals is proposed in this review. This model includes five principle partners that exist in a dynamic equilibrium: polyps of a colonial coelenterate, endosymbiotic zooxanthellae, endolithic algae (that penetrate coral skeletons), endolithic fungi (that attack the endolithic algae, the zooxanthellae and the polyps) and prokaryotic and eukaryotic microorganisms (which live in the coral mucus). Endolithic fungi and fungus-like boring microorganisms are important components of the marine calcium carbonate cycle because they actively contribute to the biodegradation of shells of animals composed of calcium carbonate and calcareous geological substrates

    <i>In vivo</i> microscale measurements of light and photosynthesis during coral bleaching:evidence for the optical feedback loop?

    Get PDF
    Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O(2) microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching

    Size Structure of Phytopopulations and Its Quantitative Evaluation

    Get PDF
    There was elucidated the original approach to the evaluation of phytopopulation size structure. For its characteristics it was offered to use the special index - index diversity of size structure (ІDSS). There are presented methods and algorithm of its determination. There was demonstrated that index diversity of size structure can be used at populational studies of species that belong to the different living forms. Especially phanerophytes (Pinus sylvestris) and hamephytes (Ledum palustre). As to Pinus sylvestris and Ledum palustre with help of index diversity of size structure was objectively proved that its cohorts and ontogenetic groups that growth in composition of forest phytocenoses typical for Ukrainian Polissya are not characterized with high level diversity of size structure. The value of index diversity of size structure is mainly less than 20 %. In phytopopulation the specific and phytocenotic peculiarity is demonstrated by diversity of size structure and also by representation of plants of certain size classes

    Reactive oxygen production induced by near-infrared radiation in three strains of the Chl <em>d</em><i>-</i>containing cyanobacterium <i>Acaryochloris marina</i>

    No full text
    Cyanobacteria in the genus Acaryochloris have largely exchanged Chl a with Chl d, enabling them to harvest near-infrared-radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) using a real-time ethylene detector in conjunction with addition of 2-keto-4-thiomethylbutyric acid, a substrate that is converted to ethylene when reacting with certain types of ROS. In all strains, NIR was found to generate less ROS than visible light (VIS). More ROS was generated if strains MBIC11017 and HICR111A were adapted to NIR and then exposed to VIS, while strain CRS demonstrated the opposite behavior. This is the very first study of ROS generation and suggests that Acaryochloris can avoid a considerable amount of light-induced stress by using NIR instead of VIS for its photosynthesis, adding further evolutionary arguments to their widespread appearance

    Relationships between growth, quality, and stocking within managed old-growth northern hardwoods

    Get PDF
    Abstract: An understanding of long-term growth dynamics is central to the development of sustainable uneven-aged silvicultural systems for northern hardwood forests in eastern North America. Of particular importance are quantitative assessments of the relationships between stocking control and long-term growth and quality development. This study examined these relationships in a long-term silviculture experiment established in northern hardwood stands in the Upper Peninsula of Michigan, USA. Stands were old growth at the onset of the experiment and were maintained at three residual stocking levels (11.5, 16.1, and 20.7 m 2 ·ha -1 ) over a 57-year period. Several aspects of long-term stocking control were evaluated, including the effects of residual stocking on tree quality development and the relationships between stand stocking and individual tree growth and stand-level production. Results suggest that residual stocking had little impact on quality development, likely due to the initial old-growth condition of the stands examined. In contrast, our results indicate that a range of stand densities will maintain acceptable rates of stand-level production in selection systems and that growth can be shifted between diameter classes depending on desired future stand conditions. Résumé : La compréhension de la dynamique de la croissance à long terme est essentielle pour mettre au point des systè-mes sylvicoles durables appliqués aux forêts inéquiennes de feuillus nordiques dans l&apos;est de l&apos;Amérique du Nord. Il est particulièrement important de quantifier les relations à long terme entre la surface terrière résiduelle et la croissance et le développement de la qualité. Cette étude se penche sur ces relations dans le cadre d&apos;une expérience sylvicole de longue durée établie dans des peuplements de feuillus nordiques sur la péninsule supérieure du Michigan, aux États-Unis. Au début de l&apos;expérience, la surface terrière de ces vieux peuplements a été abaissée à trois niveaux différents (11,5, 16,1 et 20,7 m 2 ·ha -1 ) qui ont été maintenus pendant une période de 57 ans. Plusieurs aspects du maintien de la surface terrière ont été évalués, dont l&apos;effet de la surface terrière résiduelle sur le développement de la qualité des arbres et la relation entre la surface terrière et la croissance aux échelles de l&apos;arbre individuel et du peuplement. Les résultats indiquent que la surface terrière résiduelle a eu peu d&apos;impact sur le développement de la qualité, probablement parce que les peuplements étudiés étaient initialement des vieilles forêts. Par contre, nos résultats indiquent qu&apos;une gamme de densités résiduelles est en mesure de maintenir des taux acceptables de production à l&apos;échelle du peuplement dans les systèmes de jardinage et que la croissance peut être déplacée entre les classes de diamètre en fonction des conditions futures du peuplement que l&apos;on désire. [Traduit par la Rédaction

    Non-intrusive assessment of photosystem II and photosystem I in whole coral tissues

    Get PDF
    © 2017 Szabó, Larkum, Suggett, Vass, Sass, Osmond, Zavafer, Ralph and Chow. Reef building corals (phylum Cnidaria) harbor endosymbiotic dinoflagellate algae (genus Symbiodinium) that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl) fluorescence analyses of Photosystem II (PSII) have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR) region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700) and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf). Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33◦ C for~20 min), the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ) pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv /Fm ) and functional absorption cross-section of PSII (σPSII ) remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of the integrity of PSII-PSI electron transfer dynamics in corals

    The Cowl - v.31 - n.16 - Feb 22, 1979

    Get PDF
    The Cowl - student newspaper of Providence College. Volume 31, Number 16 - February 22, 1979. 12 pages. Note:: The volume number printed on the banner page of this issue (XXXI) duplicates the volume number for the 1968-69 academic year

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs

    Get PDF
    Anamorphic ascomycetes have been implicated as causative agents of diseases in tissues and skeletons of hard corals, in tissues of soft corals (sea fans) and in tissues and shells of molluscs. Opportunist marine fungal pathogens, such as Aspergillus sydowii, are important components of marine mycoplankton and are ubiquitous in the open oceans, intertidal zones and marine sediments. These fungi can cause infection in or at least can be associated with animals which live in these ecosystems. A. sydowii can produce toxins which inhibit photosynthesis in and the growth of coral zooxanthellae. The prevalence of many documented infections has increased in frequency and severity in recent decades with the changing impacts of physical and chemical factors, such as temperature, acidity and eutrophication. Changes in these factors are thought to cause significant loss of biodiversity in marine ecosystems on a global scale in general, and especially in coral reefs and shallow bays

    We are Still Learning about the Nature of Species and Their Evolutionary Relationships

    Full text link
    Early evolutionary thinkers proposed relatively simple models to describe processes of evolution, and these are the basis of evolutionary models still used today. Recent research has since shown that evolutionary relationships among plants can be complex and difficult to reconstruct even from molecular data. In plants there is a continuum of processes, ranging from reticulate relationships within a sexually reproducing population, incomplete lineage sorting and hybridization between recently diverged species, allopolyploidy between more distantly related species, to symbioses and endosymbiosis. These aspects of plant biology can create practical problems for interpreting bifurcating gene trees and identifying species. The promise of "omics" is that it will provide data and analyses to improve our understanding of the nature of species and their phylogenetic relationships. We highlight the importance of distinguishing evolutionary processes and evolutionary models, and stress that improving the understanding of micro-evolutionary processes is necessary to inform current debate on whether or not to accept paraphyletic species
    corecore