913 research outputs found

    The Signature of Single-Degenerate Accretion Induced Collapse

    Get PDF
    The accretion induced collapse (AIC) of a white dwarf to a neutron star has long been suggested as a natural theoretical outcome in stellar evolution, but there has never been a direct detection of such an event. This is not surprising since the small amount of radioactive nickel synthesized (103M\sim10^{-3}\,M_\odot) implies a relatively dim optical transient. Here we argue that a particularly strong signature of an AIC would occur for an oxygen-neon-magnesium (ONeMg) white dwarf accreting from a star that is experiencing Roche-lobe overflow as it becomes a red giant. In such cases, the 1050erg\sim10^{50}\,{\rm erg} explosion from the AIC collides with and shock-heats the surface of the extended companion, creating an X-ray flash lasting 1hr\sim1\,{\rm hr} followed by an optical signature that peaks at an absolute magnitude of 16\sim -16 to 18-18 and lasts for a few days to a week. These events would be especially striking in old stellar environments where hydrogen-rich supernova-like, transients would not normally be expected. Although the rate of such events is not currently known, we describe observing strategies that could be utilized with high cadence surveys that should either detect these events or place strong constraints on their rates.Comment: Revised version accepted for publication in The Astrophysical Journal, 5 pages, 2 figure

    Reconciling ^(56)Ni Production in Type Ia Supernovae with Double Degenerate Scenarios

    Get PDF
    We combine the observed distribution of Type Ia supernova (SN Ia) ^(56)Ni yields with the results of sub-Chandrasekhar detonation and direct collision calculations to estimate what mass white dwarfs (WDs) should be exploding for each scenario. For collisions, the average exploding WD mass must be peaked at ≈0.75M_☉, significantly higher than the average field WD mass of ≈0.55–0.60M_☉. Thus, if collisions produce most SNe Ia, then a mechanism must exist that favours higher mass WDs. On the other hand, in old stellar populations, collisions would naturally result in low-luminosity SNe Ia, and we suggest these may be related to 1991bg-like events. For sub-Chandrasekhar detonations, the average exploding WD mass must be peaked at ≈1.1M_☉. This is similar to the average total mass in WD–WD binaries, but it is not clear whether double degenerate mergers would synthesize sufficient ^(56)Ni to match observed yields. If not, then actual ≈1.1M_☉ WDs would be needed for sub-Chandrasekhar detonations. Since such high-mass WDs are produced relatively quickly in comparison to the age of SN Ia environments, this would require either accretion on to lower mass WDs prior to ignition or a long time-scale between formation of the ≈1.1M_☉ WD and ignition

    Goal-directed attention alters the tuning of object-based representations in extrastriate cortex

    Get PDF
    Humans survive in environments that contain a vast quantity and variety of visual information. All items of perceived visual information must be represented within a limited number of brain networks. The human brain requires mechanisms for selecting only a relevant fraction of perceived information for more in-depth processing, where neural representations of that information may be actively maintained and utilized for goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet remains poorly understood. Thus, in the study we investigate how neural representations of visual object information are guided by selective attention. The magnitude of activation in human extrastriate cortex has been shown to be modulated by attention; however, object-based attention is not likely to be fully explained by a localized gain mechanism. Thus, we measured information coded in spatially distributed patterns of brain activity with fMRI while human participants performed a task requiring selective processing of a relevant visual object category that differed across conditions. Using pattern classification and spatial correlation techniques, we found that the direction of selective attention is implemented as a shift in the tuning of object-based information representations within extrastriate cortex. In contrast, we found that representations within lateral prefrontal cortex (PFC) coded for the attention condition rather than the concrete representations of object category. In sum, our findings are consistent with a model of object-based selective attention in which representations coded within extrastriate cortex are tuned to favor the representation of goal-relevant information, guided by more abstract representations within lateral PFC

    ASASSN-15pz: Revealing Significant Photometric Diversity among 2009dc-like, Peculiar SNe Ia

    Get PDF
    We report comprehensive multi-wavelength observations of a peculiar Type Ia-like supernova ("SN Ia-pec") ASASSN-15pz. ASASSN-15pz is a spectroscopic "twin" of SN 2009dc, a so-called "Super-Chandrasekhar-mass" SN, throughout its evolution, but it has a peak luminosity M_B,peak = -19.69 +/- 0.12 mag that is \approx 0.6 mag dimmer and comparable to the SN 1991T sub-class of SNe Ia at the luminous end of the normal width-luminosity relation. The synthesized Ni56 mass of M_Ni56 = 1.13 +/- 0.14 M_sun is also substantially less than that found for several 2009dc-like SNe. Previous well-studied 2009dc-like SNe have generally suffered from large and uncertain amounts of host-galaxy extinction, which is negligible for ASASSN-15pz. Based on the color of ASASSN-15pz, we estimate a host extinction for SN 2009dc of E(B-V)_host=0.12 mag and confirm its high luminosity (M_B, peak[2009dc] \approx -20.3 mag). The 2009dc-like SN population, which represents ~1% of SNe Ia, exhibits a range of peak luminosities, and do not fit onto the tight width-luminosity relation. Their optical light curves also show significant diversity of late-time (>~ 50 days) decline rates. The nebular-phase spectra provide powerful diagnostics to identify the 2009dc-like events as a distinct class of SNe Ia. We suggest referring to these sources using the phenomenology-based "2009dc-like SN Ia-pec" instead of "Super-Chandrasekhar SN Ia," which is based on an uncertain theoretical interpretation.Comment: 21 pages, 16 figures, accepted for publication in Ap

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    Get PDF
    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen

    Sickle Cell Disease Treatment with Arginine Therapy (STArT): study protocol for a phase 3 randomized controlled trial.

    Get PDF
    BACKGROUND: Despite substantial illness burden and healthcare utilization conferred by pain from vaso-occlusive episodes (VOE) in children with sickle cell disease (SCD), disease-modifying therapies to effectively treat SCD-VOE are lacking. The aim of the Sickle Cell Disease Treatment with Arginine Therapy (STArT) Trial is to provide definitive evidence regarding the efficacy of intravenous arginine as a treatment for acute SCD-VOE among children, adolescents, and young adults. METHODS: STArT is a double-blind, placebo-controlled, randomized, phase 3, multicenter trial of intravenous arginine therapy in 360 children, adolescents, and young adults who present with SCD-VOE. The STArT Trial is being conducted at 10 sites in the USA through the Pediatric Emergency Care Applied Research Network (PECARN). Enrollment began in 2021 and will continue for 5 years. Within 12 h of receiving their first dose of intravenous opioids, enrolled participants are randomized 1:1 to receive either (1) a one-time loading dose of L-arginine (200 mg/kg with a maximum of 20 g) administered intravenously followed by a standard dose of 100 mg/kg (maximum 10 g) three times a day or (2) a one-time placebo loading dose of normal saline followed by normal saline three times per day at equivalent volumes and duration as the study drug. Participants, research staff, and investigators are blinded to the participant\u27s randomization. All clinical care is provided in accordance with the institution-specific standard of care for SCD-VOE based on the 2014 National Heart, Lung, and Blood Institute guidelines. The primary outcome is time to SCD-VOE pain crisis resolution, defined as the time (in hours) from study drug delivery to the last dose of parenteral opioid delivery. Secondary outcomes include total parental opioid use and patient-reported outcomes. In addition, the trial will characterize alterations in the arginine metabolome and mitochondrial function in children with SCD-VOE. DISCUSSION: Building on the foundation of established relationships between emergency medicine providers and hematologists in a multicenter research network to ensure adequate participant accrual, the STArT Trial will provide definitive information about the efficacy of intravenous arginine for the treatment of SCD-VOE for children. TRIAL REGISTRATION: The STArT Trial was registered in ClinicalTrials.gov on April 9, 2021, and enrollment began on June 21, 2021 (NCT04839354)

    Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap

    Get PDF
    <p>Objectives: Rheumatoid arthritis (RA) shares some similar clinical and pathological features with juvenile idiopathic arthritis (JIA); indeed, the strategy of investigating whether RA susceptibility loci also confer susceptibility to JIA has already proved highly successful in identifying novel JIA loci. A plethora of newly validated RA loci has been reported in the past year. Therefore, the aim of this study was to investigate these single nucleotide polymorphisms (SNP) to determine if they were also associated with JIA.</p> <p>Methods: Thirty-four SNP that showed validated association with RA and had not been investigated previously in the UK JIA cohort were genotyped in JIA cases (n=1242), healthy controls (n=4281), and data were extracted for approximately 5380 UK Caucasian controls from the Wellcome Trust Case–Control Consortium 2. Genotype and allele frequencies were compared between cases with JIA and controls using PLINK. A replication cohort of 813 JIA cases and 3058 controls from the USA was available for validation of any significant findings.</p> <p>Results: Thirteen SNP showed significant association (p<0.05) with JIA and for all but one the direction of association was the same as in RA. Of the eight loci that were tested, three showed significant association in the US cohort.</p> <p>Conclusions: A novel JIA susceptibility locus was identified, CD247, which represents another JIA susceptibility gene whose protein product is important in T-cell activation and signalling. The authors have also confirmed association of the PTPN2 and IL2RA genes with JIA, both reaching genome-wide significance in the combined analysis.</p&gt
    corecore