5,370 research outputs found

    Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs

    Get PDF
    Seedlings are the foundation for many terrestrial ecosystems and are a critical consideration and investment for implementing global forest and landscape restoration programs. Global leaders have pledged to restore millions of hectares during the next decade, necessitating many millions of established plants. Although natural regeneration and direct seeding will likely meet a portion of that need, large quantities of high-quality, nursery-grown seedlings are also required. Insufficient plant quantities or poor-quality plants result in unsuccessful outplanting programs. Such failures have considerable economic and environmental consequences and will result in an inability to meet restoration goals. Nonetheless, the importance of restoration nurseries is often overlooked when making large-scale restoration commitments. Technology already exists to produce high-quality plants to meet a variety of goals. This technology cannot be applied, however, unless adequate resources and training are made available by overcoming political and socioeconomic barriers. In this article, we discuss the important role of nurseries to meet global restoration commitments and review three case studies where increased support to nursery programs resulted in improved restoration success

    Sense Yo Soles

    Get PDF
    The Sense Yo Soles project is a system that is embedded into a shoe insert; the plantar pressure distribution is measured by calculating the ratio of pressure on 6 individual pressure sensors located on the lateral, medial, and heel areas of both the left and right foot to the total pressure distributed across both feet. The alpha prototype created by our client and her Biomedical Engineering senior project team at San Jose State University, measured and analyzed data using the above method while connected to power and a computer. In CPE 350, we made the system stand alone and wireless allowing for the product to be more usable, and reduced the overall cost of the system. We achieved 2 this by using an ATtiny84 microcontroller to control these peripherals and to send data wirelessly using Bluetooth to an external device for processing. In CPE 450, we ported the Java application to an Android application, implemented sleep cycles with interrupts for power management, and implemented a dual sensor communication, allowing 2 sensors to send data to a single Android device. Our main goals for CPE 461/462 were to use Bluetooth Low Energy for power management, to display standing and stride data in a user friendly way on an iOS application, and to package hardware into the insole

    Symptoms and their Relationship to Disability Following Treatment for Lower Extremity Tumours

    Get PDF
    Purpose. The aims of this study were to describe the symptoms experienced by patients in the first year following treatment for lower extremity sarcoma by limb conservation and to describe the relationship between symptoms and physical disability

    Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Get PDF
    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm) and near-infrared (>760 nm) reflectance AGORS devices have recently become available that also measure red-edge (730 nm) reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris). Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69) when compared to those without (r2 = 0.57, RMSE = 2.11)

    Meeting Forest Restoration Challenges: Using the Target Plant Concept

    Get PDF
    Meeting forest restoration challenges relies on successful establishment of plant materials (e.g., seeds, cuttings, rooted cuttings, or seedlings, etc.; hereafter simply “seedlingsâ€). The Target Plant Concept (TPC) provides a flexible framework that nursery managers and their clients can use to improve the survival and growth of these seedlings. The key tenets of the TPC are that (1) more emphasis is placed on how seedlings perform on the outplanting site rather than on nursery performance, (2) a partnership exists between the nursery manager and the client to determine the target plant based on site characteristics, and (3) that information gleaned from post-planting monitoring is used to improve subsequent plant materials. Through the nursery manager–client partnership, answers to a matrix of interrelated questions define a target plant to meet the reforestation or forest restoration objectives. These questions focus on project objectives; site characteristics, limiting factors, and possible mitigation efforts; species and genetic criteria; stocktype; outplanting tools and techniques; and outplanting window. We provide examples from the southeastern United States, Hawai‛i, and Lebanon on how the TPC process has improved performance of seedlings deployed for reforestation and forest restoration

    Effects of land usage on dung beetle assemblage structure : Kruger National Park versus adjacent farmland in South Africa

    Get PDF
    Little quantitative evidence exists regarding how effective protected areas are for preserving species. We compared dung beetle assemblages (Coleoptera : Scarabaeidae : Scarabaeinae) inside and outside of the Kruger National Park, which protects indeigenous flora and fauna over a large area of savannah in the northeast lowlands of South Africa. Although it is contiguous with other reserves in South Africa, Zimbabwe and Mozambique, parts of its border abut onto farmland. Some effects of differing land usage either side of this border were studied at the South African Wildlife College (24.541° S 31.335° E) and the nearby farming village of Welverdiend using dung beetle assemblage structure (Coleoptera: Scarabaeidae: Scarabaeinae) as indicators. Samples were taken from gabbro-derived and granite-derived soils in open woody vegetation, both within the reserve and on adjoining farmland, using composite pig, elephant and cattle dung baits in the early rainy season (November 2009) and separate pig and elephant dung baits in the late rainy season (March 2010). Despite much higher large mammal density around Welverdiend, significantly greater species richness, abundance, and biomass of dung beetles were recorded in the reserve where mammal species diversity is greater and elephants produce much larger droppings than any mammal in the farmland. Assemblage structure also differed strongly between dung types, weather conditions on sample days, and season, but weakly between sampled soil types. These differences in assemblage structure were recorded over short distances as the sites in the reserve were only 3-4 km from those in farmland at Welverdiend.http://www.springerlink.com/content/100177/ab201

    Studying Functions of All Yeast Genes Simultaneously

    Get PDF
    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1

    Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives

    Get PDF
    The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc-β-OMe with Ka ≈20,000 m(-1), whereas the other one binds an O-GlcNAcylated peptide with Ka ≈70,000 m(-1). These values substantially exceed those usually measured for GlcNAc-binding lectins. Slow exchange on the NMR timescale enabled structural determinations for several complexes. As expected, the carbohydrate units are sandwiched between the pyrenes, with the alkoxy and NHAc groups emerging at the sides. The high affinity of the GlcNAcyl-peptide complex can be explained by extra-cavity interactions, raising the possibility of a family of complementary receptors for O-GlcNAc in different contexts
    corecore