93 research outputs found

    Can giant planets form by gravitational fragmentation of discs?

    Get PDF
    Gravitational fragmentation has been proposed as a mechanism for the formation of giant planets in close orbits around solar-type stars. However, it is debatable whether this mechanism can function in the inner regions (R<40 AU) of real discs. We use a newly developed method for treating the energy equation and the equation of state, which accounts for radiative transfer effects in SPH simulations of circumstellar discs. The different chemical and internal states of hydrogen and the properties of dust at different densities and temperatures (ice coated dust grains at low temperatures, ice melting, dust sublimation) are all taken into account by the new method.We present radiative hydrodynamic simulations of the inner regions of massive circumstellar discs and examine two cases: (i) a disc irradiated by a cool background radiation field (T_bgr=10K)and (ii) a disc heated by radiation from its central star (T_bgr~1/R). In neither case does the disc fragment: in the former because it cannot cool fast enough and in the latter because it is not gravitationally unstable. Our results (a) corroborate previous numerical results using different treatments for the hydrodynamics and the radiative transfer, and (b) confirm our own earlier analytic predictions. We conclude that disc fragmentation is unlikely to be able to produce giant planets around solar-type stars at radii <40 AU.Comment: Accepted by A&A, 10 pages, high-resolution available at http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications

    The statistical Analysis of Star Clusters

    Full text link
    We review a range of stastistical methods for analyzing the structures of star clusters, and derive a new measure Q{\cal Q} which both quantifies, and distinguishes between, a (relatively smooth) large-scale radial density gradient and multi-scale (fractal) sub-clustering. Q is derived from the normalised correlation length and the normalised edge length of the minimal spanning tree for each cluster

    The formation of brown dwarfs and low-mass stars by disc fragmentation

    Full text link
    We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive, extended discs around Sun-like stars. We argue that such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs typically fragment within a few thousand years to produce mainly brown dwarfs (including planetary-mass brown dwarfs) and low-mass hydrogen-burning stars. Subsequently most of the brown dwarfs are ejected by mutual interactions. We analyse the properties of these objects that form by disc fragmentation, and compare them with observations.Comment: 4 pages, 2 figures, to appear in the proceedings of the Cool Stars 15 conferenc

    The intrinsic shapes of starless cores in Ophiuchus

    Full text link
    Using observations of cores to infer their intrinsic properties requires the solution of several poorly constrained inverse problems. Here we address one of these problems, namely to deduce from the projected aspect ratios of the cores in Ophiuchus their intrinsic three-dimensional shapes. Four models are proposed, all based on the standard assumption that cores are randomly orientated ellipsoids, and on the further assumption that a core's shape is not correlated with its absolute size. The first and simplest model, M1, has a single free parameter, and assumes that the relative axes of a core are drawn randomly from a log-normal distribution with zero mean and standard deviation \sigma o. The second model, M2a, has two free parameters, and assumes that the log-normal distribution (with standard deviation \sigma o) has a finite mean, \mu o, defined so that \mu o<0 means elongated (prolate) cores are favoured, whereas \mu o>0 means flattened (oblate) cores are favoured. Details of the third model (M2b, two free parameters) and the fourth model (M4, four free parameters) are given in the text. Markov chain Monte Carlo sampling and Bayesian analysis are used to map out the posterior probability density functions of the model parameters, and the relative merits of the models are compared using Bayes factors. We show that M1 provides an acceptable fit to the Ophiuchus data with \sigma o ~ 0.57+/-0.06; and that, although the other models sometimes provide an improved fit, there is no strong justification for the introduction of their additional parameters.Comment: 10 pages, 8 figures. Accepted by MNRA

    SPH simulations of star/planet formation triggered by cloud-cloud collisions

    Get PDF
    We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass objects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the discs and their surrounding gas.Comment: 8 pages, 7 figures; accepted for publication in the proceedings of IAU Symposium 249: Exoplanets: Detection, Formation and Dynamics, Y.-S. Sun, S. Ferraz-Mello & J.-L. Zhou (eds.), Cambridge University Pres

    On the evolution of the density pdf in strongly self-gravitating systems

    Full text link
    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple appoximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form Pv(ρ)ρ1.54\mathrm{P}_v(\rho)\propto\rho^{-1.54} for the (volume-weighted) PDF and Pm(ρ)ρ0.54\mathrm{P}_m(\rho)\propto\rho^{-0.54} for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates. Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured star formation rates are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.Comment: accepted for publication, 13 page

    How do brown dwarves form?

    Full text link
    We review and evaluate four mechanisms for forming brown dwarves: (i) dynamical ejection of a stellar embryo from its placental prestellar core; (ii) opacity-limited fragmentation of a shock-compressed layer; (iii) gravitational instabilities in discs, triggered by impulsive interactions with other discs or naked stars; and (iv) photo-erosion of pre-existing cores. All these mechanisms can produce free-floating brown dwarves, but only (ii) and (iii) are likely to produce brown dwarves in multiple systems, and (i) has difficulty delivering brown dwarves with discs.Comment: To appear in the proceedings of "Low Mass Stars and Brown Dwarfs: IMF, Accretion and Activity" (Volterra, 2004). 6 pages, 1 figur
    corecore