25 research outputs found

    Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy.

    Get PDF
    Microglia are well known to play a critical role in maintaining brain homeostasis. However, their role in epileptogenesis has yet to be determined. Here, we demonstrate that elevated mTOR signaling in mouse microglia leads to phenotypic changes, including an amoeboid-like morphology, increased proliferation, and robust phagocytosis activity, but without a significant induction of pro-inflammatory cytokines. We further provide evidence that these noninflammatory changes in microglia disrupt homeostasis of the CNS, leading to reduced synapse density, marked microglial infiltration into hippocampal pyramidal layers, moderate neuronal degeneration, and massive proliferation of astrocytes. Moreover, the mice thus affected develop severe early-onset spontaneous recurrent seizures (SRSs). Therefore, we have revealed an epileptogenic mechanism that is independent of the microglial inflammatory response. Our data suggest that microglia could be an opportune target for epilepsy prevention

    Rapid Communication with a “P300” Matrix Speller Using Electrocorticographic Signals (ECoG)

    Get PDF
    A brain–computer interface (BCI) can provide a non-muscular communication channel to severely disabled people. One particular realization of a BCI is the P300 matrix speller that was originally described by Farwell and Donchin (1988). This speller uses event-related potentials (ERPs) that include the P300 ERP. All previous online studies of the P300 matrix speller used scalp-recorded electroencephalography (EEG) and were limited in their communication performance to only a few characters per minute. In our study, we investigated the feasibility of using electrocorticographic (ECoG) signals for online operation of the matrix speller, and determined associated spelling rates. We used the matrix speller that is implemented in the BCI2000 system. This speller used ECoG signals that were recorded from frontal, parietal, and occipital areas in one subject. This subject spelled a total of 444 characters in online experiments. The results showed that the subject sustained a rate of 17 characters/min (i.e., 69 bits/min), and achieved a peak rate of 22 characters/min (i.e., 113 bits/min). Detailed analysis of the results suggests that ERPs over visual areas (i.e., visual evoked potentials) contribute significantly to the performance of the matrix speller BCI system. Our results also point to potential reasons for the apparent advantages in spelling performance of ECoG compared to EEG. Thus, with additional verification in more subjects, these results may further extend the communication options for people with serious neuromuscular disabilities

    Electrocorticographic Representations of Segmental Features in Continuous Speech

    Get PDF
    International audienceAcoustic speech output results from coordinated articulation of dozens of muscles, bones and cartilages of the vocal mechanism. While we commonly take the fluency and speed of our speech productions for granted, the neural mechanisms facilitating the requisite muscular control are not completely understood. Previous neuroimaging and electrophysiology studies of speech sensorimotor control has typically concentrated on speech sounds (i.e., phonemes, syllables and words) in isolation; sentence-length investigations have largely been used toinform coincident linguistic processing. In this study, we examined the neural representations of segmental features (place and manner of articulation, and voicing status) in the context of fluent, continuous speech production. We used recordings from the cortical surface electrocorticography (ECoG)) to simultaneously evaluate the spatial topography and temporal dynamics of the neural correlates of speech articulation that may mediate the generation of hypothesized gestural or articulatory scores. We found that the representation of place ofarticulation involved broad networks of brain regions during all phases of speech production: preparation, execution and monitoring. In contrast, manner of articulation and voicing status were dominated by auditory cortical responses after speech had been initiated. These resultsprovide a new insight into the articulatory and auditory processes underlying speech production in terms of their motor requirements and acoustic correlates

    Neural correlates of visual–spatial attention in electrocorticographic signals in humans

    Get PDF
    Attention is a cognitive selection mechanism that allocates the limited processing resources of the brain to the sensory streams most relevant to our immediate goals, thereby enhancing responsiveness and behavioral performance. The underlying neural mechanisms of orienting attention are distributed across a widespread cortical network. While aspects of this network have been extensively studied, details about the electrophysiological dynamics of this network are scarce. In this study, we investigated attentional networks using electrocorticographic (ECoG) recordings from the surface of the brain, which combine broad spatial coverage with high temporal resolution, in five human subjects. ECoG was recorded when subjects covertly attended to a spatial location and responded to contrast changes in the presence of distractors in a modified Posner cueing task. ECoG amplitudes in the alpha, beta, and gamma bands identified neural changes associated with covert attention and motor preparation/execution in the different stages of the task. The results show that attentional engagement was primarily associated with ECoG activity in the visual, prefrontal, premotor, and parietal cortices. Motor preparation/execution was associated with ECoG activity in premotor/sensorimotor cortices. In summary, our results illustrate rich and distributed cortical dynamics that are associated with orienting attention and the subsequent motor preparation and execution. These findings are largely consistent with and expand on primate studies using intracortical recordings and human functional neuroimaging studies

    Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task.

    Get PDF
    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain

    Proceedings of the Eighth International Workshop on Advances in Electrocorticography

    No full text
    Excerpted proceedings of the Eighth International Workshop on Advances in Electrocorticography (ECoG), which convened October 15–16, 2015 in Chicago, IL, are presented. The workshop series has become the foremost gathering to present current basic and clinical research in subdural brain signal recording and analysis

    Neural Correlates of Visual?Spatial Attention in Electrocorticographic Signals in Humans

    No full text
    Attention is a cognitive selection mechanism that allocates the limited processing resources of the brain to the sensory streams most relevant to our immediate goals, thereby enhancing responsiveness and behavioral performance. The underlying neural mechanisms of orienting attention are distributed across a widespread cortical network. While aspects of this network have been extensively studied, details about the electrophysiological dynamics of this network are scarce. In this study, we investigated attentional networks using electrocorticographic (ECoG) recordings from the surface of the brain, which combine broad spatial coverage with high temporal resolution, in five human subjects. ECoG was recorded when subjects covertly attended to a spatial location and responded to contrast changes in the presence of distractors in a modified Posner cueing task. ECoG amplitudes in the alpha, beta, and gamma bands identified neural changes associated with covert attention and motor preparation/execution in the different stages of the task. The results show that attentional engagement was primarily associated with ECoG activity in the visual, prefrontal, premotor, and parietal cortices. Motor preparation/execution was associated with ECoG activity in premotor/sensorimotor cortices. In summary, our results illustrate rich and distributed cortical dynamics that are associated with orienting attention and the subsequent motor preparation and execution. These findings are largely consistent with and expand on primate studies using intracortical recordings and human functional neuroimaging studies
    corecore