3 research outputs found

    Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism

    Get PDF
    Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics

    An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro.

    Get PDF
    The Kae1 (Kinase-associated endopeptidase 1) protein is a member of the recently identified transcription complex EKC and telomeres maintenance complex KEOPS in yeast. Kae1 homologues are encoded by all sequenced genomes in the three domains of life. Although annotated as putative endopeptidases, the actual functions of these universal proteins are unknown. Here we show that the purified Kae1 protein (Pa-Kae1) from Pyrococcus abyssi is an iron-protein with a novel type of ATP-binding site. Surprisingly, this protein did not exhibit endopeptidase activity in vitro but binds cooperatively to single and double-stranded DNA and induces unusual DNA conformational change. Furthermore, Pa-Kae1 exhibits a class I apurinic (AP)-endonuclease activity (AP-lyase). Both DNA binding and AP-endonuclease activity are inhibited by ATP. Kae1 is thus a novel and atypical universal DNA interacting protein whose importance could rival those of RecA (RadA/Rad51) in the maintenance of genome integrity in all living cells
    corecore