4,933 research outputs found

    The trouble with orbits: the Stark effect in the old and the new quantum theory

    Full text link
    The old quantum theory and Schr\"odinger's wave mechanics (and other forms of quantum mechanics) give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine the account of the effect in the old quantum theory, which was hailed as a major success of that theory, from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a fundamental problem one runs into in the old quantum theory with the Stark effect. It turns out that, even without an external field, it depends on the coordinates in which the quantum conditions are imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not. In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocuous non-uniqueness of bases in Hilbert space. Second, we review how the so-called WKB (Wentzel-Kramers-Brillouin) approximation method for solving the Schr\"odinger equation reproduces the quantum conditions of the old quantum theory amended by some additional half-integer terms. These extra terms remove the need for some arbitrary extra restrictions on the allowed orbits that the old quantum theory required over and above the basic quantum condition

    Pascual Jordan's resolution of the conundrum of the wave-particle duality of light

    Full text link
    In 1909, Einstein derived a formula for the mean square energy fluctuation in black-body radiation. This formula is the sum of a wave term and a particle term. In a key contribution to the 1925 Dreimaennerarbeit with Born and Heisenberg, Jordan showed that one recovers both terms in a simple model of quantized waves. So the two terms do not require separate mechanisms but arise from a single consistent dynamical framework. Several authors have argued that various infinities invalidate Jordan's conclusions. In this paper, we defend Jordan's argument against such criticism. In particular, we note that the fluctuation in a narrow frequency range, which is what Jordan calculated, is perfectly finite. We also note, however, that Jordan's argument is incomplete. In modern terms, Jordan calculated the quantum uncertainty in the energy of a subsystem in an energy eigenstate of the whole system, whereas the thermal fluctuation is the average of this quantity over an ensemble of such states. Still, our overall conclusion is that Jordan's argument is basically sound and that he deserves credit for resolving a major conundrum in the development of quantum physics.Comment: This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut fuer Wissenschaftsgeschichte and the Fritz Haber Institut in Berli

    Weak lensing of the CMB

    Full text link
    The cosmic microwave background (CMB) represents a unique source for the study of gravitational lensing. It is extended across the entire sky, partially polarized, located at the extreme distance of z=1100, and is thought to have the simple, underlying statistics of a Gaussian random field. Here we review the weak lensing of the CMB, highlighting the aspects which differentiate it from the weak lensing of other sources, such as galaxies. We discuss the statistics of the lensing deflection field which remaps the CMB, and the corresponding effect on the power spectra. We then focus on methods for reconstructing the lensing deflections, describing efficient quadratic maximum-likelihood estimators and delensing. We end by reviewing recent detections and observational prospects.Comment: 21 pages, 5 figures. Invited review for GRG special issue on gravitational lensin

    Seeing the light – finding the poetic content of design objects

    Get PDF
    This paper presents the process and initial results of a research through design project attempting to understand the poetic qualities of design objects. This exploration forms part of a PhD study addressing design artefacts as poetic objects - objects that both embed and conjure memory, association and imagination. The research examines the ways in which design objects can be poetic and how designers actively and knowingly use objects to poetic effect. It is proposed that the poetic content of design artefacts can be located on a continuum ranging from the experiential - relating to how we perceive things - to the reflective and cultural. What unites these levels is the capacity of design objects to reveal and change our way of looking at things. The practice uses the design of lighting as a vehicle for exploring the poetic meaning of designed objects more generally. Starting with the notion that lights do more than provide light, the current phase of practice examines the ways in which luminaires can mediate how we perceive and experience light and explores, in particular, the more nuanced and ephemeral qualities of light that escape conscious attention

    CMB temperature lensing power reconstruction

    Full text link
    We study reconstruction of the lensing potential power spectrum from CMB temperature data, with an eye to the Planck experiment. We work with the optimal quadratic estimator of Okamoto and Hu, which we characterize thoroughly in application to reconstruction of the lensing power spectrum. We find that at multipoles L<250 our current understanding of this estimator is biased at the 15% level by beyond-gradient terms in the Taylor expansion of lensing effects. We present the full lensed trispectrum to fourth order in the lensing potential to explain this effect. We show that the low-L bias, as well as a previously known bias at high-L, is relevant to the determination of cosmology and must be corrected for in order to avoid significant parameter errors. We also investigate the covariance of the reconstructed power, finding broad correlations of ~0.1%. Finally, we discuss several small improvements which may be made to the optimal estimator to mitigate these problems.Comment: straightforward bias mitigation on pg. 14, matches version accepted by PR

    On the joint analysis of CMB temperature and lensing-reconstruction power spectra

    Full text link
    Gravitational lensing provides a significant source of cosmological information in modern CMB parameter analyses. It is measured in both the power spectrum and trispectrum of the temperature fluctuations. These observables are often treated as independent, although as they are both determined from the same map this is impossible. In this paper, we perform a rigorous analysis of the covariance between lensing power spectrum and trispectrum analyses. We find two dominant contributions coming from: (i) correlations between the disconnected noise bias in the trispectrum measurement and sample variance in the temperature power spectrum; and (ii) sample variance of the lenses themselves. The former is naturally removed when the dominant N0 Gaussian bias in the reconstructed deflection spectrum is dealt with via a partially data-dependent correction, as advocated elsewhere for other reasons. The remaining lens-cosmic-variance contribution is easily modeled but can safely be ignored for a Planck-like experiment, justifying treating the two observable spectra as independent. We also test simple likelihood approximations for the deflection power spectrum, finding that a Gaussian with a parameter-independent covariance performs well.Comment: 25+11 pages, 14 figure

    Asymmetric Beams and CMB Statistical Anisotropy

    Get PDF
    Beam asymmetries result in statistically-anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently-detected 9 sigma quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.Comment: updated to match PRD version + typo correction in Eq. B

    Solar rejection in laser based underwater communication systems

    Get PDF
    This article provides a numerical study of the expected improvements in an underwater optical system given by a single-mode laser diode operating within a Fraunhofer line in a coastal water type. The system performance is examined for a silicon PIN direct-detection receiver in the euphotic zone. The solar irradiance, modelled as white noise, is evaluated when using a lithium niobate interference and a birefringent filter with different field-of-view (FOV) characteristics in a clear sky situation. The results of this analysis show the inverse dependence of the signal-to-noise (SNR) on the FOV, along with the significant improvement in the receiver sensitivity given by a narrow optical bandpass filter (OBPF)

    Masses and Decay Constants of Heavy-Light Mesons Using the Multistate Smearing Technique

    Full text link
    We present results for f_B and masses of low-lying heavy-light mesons. Calculations were performed in the quenched approximation using multistate smearing functions generated from a spinless relativistic quark model Hamiltonian. Beta values range from 5.7 to 6.3, and light quark masses corresponding to pion masses as low as 300 MeV are computed at each value. We use the 1P--1S charmonium splitting to set the overall scale.Comment: 9 pages, 13 figures, and 5 tables as a single 193K compressed and uuencoded Postscript file, FERMILAB--CONF--93/376-
    corecore