8 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    First Description of the Nuclear and Mitochondrial Genomes and Associated Host Preference of Trichopoda pennipes, a Parasitoid of Nezara viridula

    No full text
    Trichopoda pennipes is a tachinid parasitoid of several significant heteropteran agricultural pests, including the southern green stink bug, Nezara viridula, and leaf-footed bug, Leptoglossus phyllopus. To be used successfully as a biological control agent, the fly must selectively parasitize the target host species. Differences in the host preference of T. pennipes were assessed by assembling the nuclear and mitochondrial genomes of 38 flies reared from field-collected N. viridula and L. phyllopus. High-quality de novo draft genomes of T. pennipes were assembled using long-read sequencing. The assembly totaled 672 MB distributed among 561 contigs, having an N50 of 11.9 MB and a GC of 31.7%, with the longest contig at 28 MB. The genome was assessed for completeness using BUSCO in the Insecta dataset, resulting in a score of 99.4%, and 97.4% of the genes were single copy-loci. The mitochondrial genomes of the 38 T. pennipes flies were sequenced and compared to identify possible host-determined sibling species. The assembled circular genomes ranged from 15,345 bp to 16,390 bp and encode 22 tRNAs, two rRNAs, and 13 protein-coding genes (PCGs). There were no differences in the architecture of these genomes. Phylogenetic analyses using sequence information from 13 PCGs and the two rRNAs individually or as a combined dataset resolved the parasitoids into two distinct lineages: T. pennipes that parasitized both N. viridula and L. phyllopus, and others that parasitized only L. phyllopus
    corecore