4 research outputs found

    Change of Line Tension in Phase-Separated Vesicles upon Protein Binding

    No full text
    We measured the effect of a model membrane-binding protein on line tension and morphology of phase-separated lipid-bilayer vesicles. We studied giant unilamellar vesicles composed of a cholesterol/dioleoylphosphatidylcholine/palmitoylsphingomyelin mixture and a controlled mole fraction of a Ni-chelating lipid. These vesicles exhibited two coexisting fluid-phase domains at room temperature. Owing to the line tension, σ, between the two phases, the boundary between them was pulled like a purse string so that the smaller domain formed a bud. While observing the vesicles in a microscope, histidine-tagged green fluorescent protein was added, which bound to the Ni-chelating lipid. As protein bound, the vesicle shape changed and the length of the phase boundary increased. The change in morphology was attributed to a reduction of σ between the two phases because of preferential accumulation of histidine-tagged green fluorescent protein–Ni-chelating lipid clusters at the domain boundary. Greater reductions of σ were found in samples with higher concentrations of Ni-chelating lipid; this trend provided an estimate of the binding energy at the boundary, approximately <i>k</i><sub>B</sub><i>T</i>. The results show how domain boundaries can lead to an accumulation of membrane-binding proteins at their boundaries and, in turn, how proteins can alter line tension and vesicle morphology

    Wax Spreading in Paper under Controlled Pressure and Temperature

    No full text
    This work describes a novel rapid method to fabricate high-resolution paper-based microfluidic devices using wax-ink-based printing. This study demonstrates that both temperature and pressure are important knobs in controlling the device resolution. High-resolution lines and patterns were obtained by heating the paper asymmetrically from one side up to 110 °C while applying pressure up to 49 kPa. Starting with wax lines with an initial width of 130 μm, we achieve a thorough penetration through a 190 μm-thick paper with lateral spreading on the front as narrow as 90 μm. The role of temperature and pressure are systematically studied and compared with the prediction of the Lucas–Washburn equation. We found that the temperature dependence of spreading can be explained by the viscosity change of the wax, according to the Lucas–Washburn equation. The pressure dependence deviates from Lucas–Washburn behavior because of compression of the paper. An optimal condition for achieving full depth penetration of the wax yet minimizing lateral spreading is suggested after exploring various parameters including temperature, pressure, and paper type. These findings could lead to a rapid roll-to-roll fabrication of high-resolution paper-based diagnostic devices

    Confined Assemblies of Colloidal Particles with Soft Repulsive Interactions

    No full text
    We investigate the microconfinement of charged silica nanoparticles dispersed in refractive index matching monomers in poly­(dimethylsiloxane) (PDMS) porous membrane. Here, the silica colloidal particles interact with each other and the pore wall via electrostatic double layer forces. Different from the hard sphere systems where the assembled morphologies are prescribed by the diameter ratio between the cylindrical confinement and the nanoparticles, here we observe a much richer variety of assemblies that are highly sensitive to both bulk and local nanoparticle concentration with fixed particle size and channel size. The experimentally observed assembly morphologies are consistent with theoretical predictions from the literature, based on Yukawa potential in the low packing density regime. Also, most of the configurations found in the experiment are well described by computer simulations using pairwise additive long-range repulsive interactions, demonstrating the ability to control the system to obtain a desired structure
    corecore