9 research outputs found

    Mycogenic silver nanoparticles from endophytic trichoderma atroviride with antimicrobial activity

    Get PDF
    There is an increasing interest in developing nanoparticles with diverse biologic activities. To this end, we prepared 10 to 15 nm silver nanoparticles (AgNP) from native isolates of Trichoderma atroviride. Within this study, endophytic fungi hosted four medicinal plants in Saint Katherine Protectorate, South Sinai, Egypt have been isolated by surface sterilization technique on four isolation media. Ten species, based on their frequency of occurrence, out of twenty recovered taxa were tested for their capability to synthesize extracellular AgNPs. Trichoderma atroviride hosted Chiliadenus montanus was found to be the best candidate for the production of mycogenic AgNPs among all examined species. The mycosynthesized AgNPs were compared with chemically synthesized and characterized using Ultraviolet-visible (UV-vis) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) techniques. The HRTEM result showed the distribution of spherical AgNPs ranging from 10 to 15 nm. Trichoderma atroviride isolate was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number MH283876 in the NCBI Database. Antibacterial, anticandidal and antifungal effects of chemically and mycosynthesized AgNPs were examined at various concentrations in vitro against six pathogenic bacteria and 4 pathogenic fungi by agar well diffusion technique. Standard antibiotics; Gentamicin, Amoxicillin, Clotrimazole, and Nystatin at 5 μg/disk were taken as positive controls, while 5% DMSO was used as the negative control. Our data revealed that the application of mycogenic AgNPs at a concentration of 100 ppm resulted in maximum inhibition of pathogenic bacteria and fungi. These data suggest that AgNPs from native isolates of Trichoderma atroviride (MH283876) offer a source of rapid synthesis of eco-friendly, economical biomaterials that show antimicrobial activities

    Advances in eco-efficient agriculture: the plant-soil mycobiome

    No full text
    In order to achieve a desirable ecological and sustainable agriculture a thorough understanding of the plant-soil mycobiome is imperative. Commercial industrial agriculture alters greenhouse gas emissions, promotes loss of plant and soil biodiversity, increases pollution by raising atmospheric CO2, and releases pesticides, thus affecting both terrestrial and aquatic ecosystems. Diversified farming systems, including perennial cultivated pastures, are among worldwide strategies that aim to reduce terrestrial greenhouse gas emissions and deal with threats to global sustainability. Additionally, stimulation of soil microbes and appropriate soil management can influence soil interactions as well as the rates of organic matter decomposition and the release of gases. Agricultural soil microbial communities play a central role in ecosystem processes and are affected by biocontrol agents, biofertilizers, and exposure to pesticides, the extent to which is yet to be fully elucidated. Intercropping different plant species is beneficial, as this can increase carbon fixation by plants, transferring carbon to the soil, especially via mycorrhizas, thus modifying interplant interactions. This review focuses on agro-ecosystems, showing the latest advances in the plant-soil interface (the mycobiome) for an eco-efficient agricultural production

    Advances in eco-efficient agriculture: the plant-soil mycobiome

    No full text
    In order to achieve a desirable ecological and sustainable agriculture a thorough understanding of the plant-soil mycobiome is imperative. Commercial industrial agriculture alters greenhouse gas emissions, promotes loss of plant and soil biodiversity, increases pollution by raising atmospheric CO2, and releases pesticides, thus affecting both terrestrial and aquatic ecosystems. Diversified farming systems, including perennial cultivated pastures, are among worldwide strategies that aim to reduce terrestrial greenhouse gas emissions and deal with threats to global sustainability. Additionally, stimulation of soil microbes and appropriate soil management can influence soil interactions as well as the rates of organic matter decomposition and the release of gases. Agricultural soil microbial communities play a central role in ecosystem processes and are affected by biocontrol agents, biofertilizers, and exposure to pesticides, the extent to which is yet to be fully elucidated. Intercropping different plant species is beneficial, as this can increase carbon fixation by plants, transferring carbon to the soil, especially via mycorrhizas, thus modifying interplant interactions. This review focuses on agro-ecosystems, showing the latest advances in the plant-soil interface (the mycobiome) for an eco-efficient agricultural production

    Production of a recombinant swollenin from trichoderma harzianum in escherichia coli and its potential synergistic role in biomass degradation

    No full text
    Background: Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Results: Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 +/- 7%. Conclusions: Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology

    Komplexní řešení dobývání porubu 074 696 na OKD, a.s., Důl Paskov, závod Staříč

    No full text
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Fakulta hornicko-geologická. Institut hornického inženýrství a bezpečnosti (542

    MOESM2 of Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation

    No full text
    Additional file 2: Figure S2. Light microscopy (10×) of Avicel in the presence or absence of purified recombinant ThSwo for 72 h at 45 °C. a Avicel in the absence of ThSwo at 0 h. b Avicel in the absence of ThSwo at 72 h. c Avicel in the presence of ThSwo at 48 h. d Avicel in the presence of ThSwo at 72 h. As an additional control, Avicel was also treated with BSA under the same conditions and observed

    Antagonism of Trichoderma asperellum against Phytophthora megakarya and its potential to promote cacao growth and induce biochemical defence

    No full text
    This work aimed to assess the antagonism effects of four different Trichoderma asperellum isolates against Phytophthora megakarya and their ability to enhance cacao growth and biochemical defence. Results showed that In paired culture, all the isolates of T. asperellum used were antagonistic to P. megakarya by means of mycoparasitism. In pot experiments, leaf number, plant height, shoots and root dry matter were significantly increased by T. asperellum. Similarly, chlorophyll rate, P uptake and acid phosphatase activities were also increased. These antagonists reduced significantly the effects of P. megakarya in the leaves of cacao plants. Amino acid and phenolic components content increased in either healthy or infected leaves from cacao plants inoculated with T. asperellum. There was negative correlation between both phenolic compounds and disease severity and amino acids and disease severity. This suggests that these compounds are involved in disease resistance. In fact, the induction of specific amino acids such as alanine, glutamic acid and methionine may play an important role in the adaptation of cacao plant to P. megakarya infection. These findings demonstrated that Trichoderma asperellum (PR10, PR11, PR12 and PR659-7) could be used to improve the development of cacao plants and protect the plant against Phytophthora megakarya
    corecore