7 research outputs found

    Reduced Salivary Lactoferrin Levels in Early-Onset Alzheimer's Disease

    Get PDF
    Grants from Instituto de Salud Carlos III (PI22CIII/00042), CIBERNED (CB07/502, CB06/05/1111, PI2021/03), the Spanish Ministry of Economy and Competitiveness (PID2020-119978RB-I00) and the Andalucía-FEDER Program (UPO-1380913).S

    Disturbed circadian rhythm and retinal degeneration in a mouse model of Alzheimer’s disease

    Full text link
    The circadian clock is synchronized to the 24 h day by environmental light which is transmitted from the retina to the suprachiasmatic nucleus (SCN) primarily via the retinohypothalamic tract (RHT). Circadian rhythm abnormalities have been reported in neurodegenerative disorders such as Alzheimer's disease (AD). Whether these AD-related changes are a result of the altered clock gene expression, retina degeneration, including the dysfunction in RHT transmission, loss of retinal ganglion cells and its electrophysiological capabilities, or a combination of all of these pathological mechanisms, is not known. Here, we evaluated transgenic APP/PS1 mouse model of AD and wild-type mice at 6- and 12-month-old, as early and late pathological stage, respectively. We noticed the alteration of circadian clock gene expression not only in the hypothalamus but also in two extra-hypothalamic brain regions, cerebral cortex and hippocampus, in APP/PS1 mice. These alterations were observed in 6-month-old transgenic mice and were exacerbated at 12 months of age. This could be explained by the reduced RHT projections in the SCN of APP/PS1 mice, correlating with downregulation of hypothalamic GABAergic response in APP/PS1 mice in advanced stage of pathology. Importantly, we also report retinal degeneration in APP/PS1 mice, including Aβ deposits and reduced choline acetyltransferase levels, loss of melanopsin retinal ganglion cells and functional integrity mainly of inner retina layers. Our findings support the theory that retinal degeneration constitutes an early pathological event that directly affects the control of circadian rhythm in AD

    Disturbed circadian rhythm and retinal degeneration in a mouse model of Alzheimer's disease

    Get PDF
    The circadian clock is synchronized to the 24 h day by environmental light which is transmitted from the retina to the suprachiasmatic nucleus (SCN) primarily via the retinohypothalamic tract (RHT). Circadian rhythm abnormalities have been reported in neurodegenerative disorders such as Alzheimer's disease (AD). Whether these AD-related changes are a result of the altered clock gene expression, retina degeneration, including the dysfunction in RHT transmission, loss of retinal ganglion cells and its electrophysiological capabilities, or a combination of all of these pathological mechanisms, is not known. Here, we evaluated transgenic APP/PS1 mouse model of AD and wild-type mice at 6- and 12-month-old, as early and late pathological stage, respectively. We noticed the alteration of circadian clock gene expression not only in the hypothalamus but also in two extra-hypothalamic brain regions, cerebral cortex and hippocampus, in APP/PS1 mice. These alterations were observed in 6-month-old transgenic mice and were exacerbated at 12 months of age. This could be explained by the reduced RHT projections in the SCN of APP/PS1 mice, correlating with downregulation of hypothalamic GABAergic response in APP/PS1 mice in advanced stage of pathology. Importantly, we also report retinal degeneration in APP/PS1 mice, including Aβ deposits and reduced choline acetyltransferase levels, loss of melanopsin retinal ganglion cells and functional integrity mainly of inner retina layers. Our findings support the theory that retinal degeneration constitutes an early pathological event that directly affects the control of circadian rhythm in AD.This study was supported by grants from Instituto de Salud Carlos III (PI2021/00679; PI22CIII/00042), Hospital Universitario 12 de Octubre Research Institute (2022/0068), FEDER, and CIBERNED (CB07/502, PI2021/03).S

    Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer’s Disease

    Get PDF
    The glymphatic system, a fluid-clearance pathway involved in brain waste clearance, is known to be impaired in neurological disorders, including Alzheimer’s disease (AD). For this reason, it is important to understand the specific mechanisms and factors controlling glymphatic function. This pathway enables the flow of cerebrospinal fluid (CSF) into the brain and subsequently the brain interstitium, supported by aquaporins (AQPs). Continuous CSF transport through the brain parenchyma is critical for the effective transport and drainage of waste solutes, such as toxic proteins, through the glymphatic system. However, a balance between CSF production and secretion from the choroid plexus, through AQP regulation, is also needed. Thus, any condition that affects CSF homeostasis will also interfere with effective waste removal through the clearance glymphatic pathway and the subsequent processes of neurodegeneration. In this review, we highlight the role of AQPs in the choroid plexus in the modulation of CSF homeostasis and, consequently, the glymphatic clearance pathway, with a special focus on AD

    Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease?

    Get PDF
    Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer's disease. A predominant function of the retina is circadian synchronization, carrying information to the brain through the retinohypothalamic tract, which projects to the suprachiasmatic nucleus. Notably, Alzheimer's disease hallmarks, including amyloid-β, are present in the retinas of Alzheimer's disease patients, followed/associated by structural and functional disturbances. However, the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer's disease is not fully understood, although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm

    Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina

    Get PDF
    Alzheimer’s disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD
    corecore