5 research outputs found

    No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ruminants, in particular bovines, are the primary reservoir of Shiga toxin-producing <it>E. coli </it>(STEC), but whole genome analyses of the current German ESBL-producing O104:H4 outbreak strain of sequence type (ST) 678 showed this strain to be highly similar to enteroaggregative <it>E. coli </it>(EAEC). Strains of the EAEC pathotype are basically adapted to the human host. To clarify whether in contrast to this paradigm, the O104:H4 outbreak strain and/or EAEC may also be able to colonize ruminants, we screened a total of 2.000 colonies from faecal samples of 100 cattle from 34 different farms - all located in the HUS outbreak region of Northern Germany - for genes associated with the O104:H4 HUS outbreak strain (<it>stx2</it>, <it>terD</it>, <it>rfb</it><sub>O104</sub>, <it>fliC</it><sub>H4</sub>), STEC (<it>stx1</it>, <it>stx2</it>, <it>escV</it>), EAEC (<it>pAA</it>, <it>aggR, astA</it>), and ESBL-production (<it>bla</it><sub>CTX-M</sub>, <it>bla</it><sub>TEM</sub>, <it>bla</it><sub>SHV</sub>).</p> <p>Results</p> <p>The faecal samples contained neither the HUS outbreak strain nor any EAEC. As the current outbreak strain belongs to ST678 and displays an en-teroaggregative and ESBL-producing phenotype, we additionally screened selected strains for ST678 as well as the aggregative adhesion pattern in HEp-2 cells. However, we were unable to find any strains belonging to ST678 or showing an aggregative adhesion pattern. A high percentage of animals (28%) shed STEC, corroborating previous knowl-edge and thereby proving the validity of our study. One of the STEC also harboured the LEE pathogenicity island. In addition, eleven animals shed ESBL-producing <it>E. coli</it>.</p> <p>Conclusions</p> <p>While we are aware of the limitations of our survey, our data support the theory, that, in contrast to other Shiga-toxin producing <it>E. coli</it>, cattle are not the reservoir for the O104:H4 outbreak strain or other EAEC, but that the outbreak strain seems to be adapted to humans or might have yet another reservoir, raising new questions about the epidemiology of STEC O104:H4.</p

    Signature-Tagged Mutagenesis in a Chicken Infection Model Leads to the Identification of a Novel Avian Pathogenic Escherichia coli Fimbrial Adhesin

    Get PDF
    The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens

    Das Lagemanagement des Robert Koch-Instituts während der COVID-19-Pandemie und der Austausch zwischen Bund und Ländern

    No full text
    The Robert Koch Institute (RKI) plays a central role in Germany in the management of health hazards of biological origin. The RKI's crisis management aims to contribute to protecting the health of the population in Germany in significant epidemic situations and to maintain the RKI's working ability over a long period of time even under high load. This article illustrates the crisis management of the RKI in general as well as during the COVID-19 pandemic. The generic RKI crisis management structures and the setup of the RKI emergency operations centre (EOC), their operationalisation in the context of the COVID-19 pandemic and the resulting challenges as of 31 October 2020 are described in this paper. The exchange between the federal and state governments during the pandemic is also described.The COVID-19 pandemic has led to extraordinary circumstances. During the epidemic situation, good communication and coordination has been essential, both within the RKI and with other federal or state authorities and expert groups. Under great pressure, the RKI produces and regularly updates recommendations, statements and assessments on various topics. To provide operational support for all COVID-19 related activities, an EOC was activated at the RKI. During the COVID-19 pandemic, there are various challenges regarding personnel and structures. It became apparent that good preparation (e.g. existing task descriptions and premises) has an important positive impact on crisis management

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Abstract Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL
    corecore