67 research outputs found

    Nadezhda Krupskaya’s contributions to early Soviet adult education theory and practice.

    Get PDF
    This article examines Nadezhda Krupskaya’s contribution to early Soviet adult education, outlines key principles of her adult education theory, and discusses tensions and challenges in implementing them in the Soviet context

    Wind and its effects on high-rise buildings

    Get PDF
    This paper examines the relation between high-rise buildings and wind, how wind flows, the action and interaction of the wind with structures, and the design factor which is considered a critical factor in the construction of skyscrapers

    Wind and its effects on high-rise buildings

    Get PDF
    This paper examines the relation between high-rise buildings and wind, how wind flows, the action and interaction of the wind with structures, and the design factor which is considered a critical factor in the construction of skyscrapers

    Comparative analysis of consumptional properties for various types of household lamps

    Get PDF
    This article examines the functions, profitability, economy, and characteristics of different types of household lamps

    p-State Luminescence in CdSe Nanoplatelets: The Role of Lateral Confinement and an LO Phonon Bottleneck

    Full text link
    We report excited state emission from p-states at excitation fluences well below ground state saturation in CdSe nanoplatelets. Size dependent exciton ground state-excited state energies and dynamics are determined by three independent methods, time-resolved photoluminescence (PL), time-integrated PL and Hartree renormalized k\cdotp calculations -- all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Our results suggest that the PL decay of CdSe platelets is governed by an LO-phonon bottleneck, related to the reported low exciton phonon coupling in CdSe platelets and only observable due to the very large oscillator strength and energy spacing of both states

    Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton recombination. This makes type-II heteronanoplatelets interesting candidates for low threshold lasing applications and photovoltaics

    Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type II hetero nanoplatelets

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We investigate the temperature-dependent decay kinetics of type II CdSe-CdTe and CdTe-CdSe core-lateral shell nanoplatelets. From a kinetic analysis of the photoluminescence (PL) decay and a measurement of the temperature dependent quantum yield we deduce the temperature dependence of the non-radiative and radiative lifetimes of hetero nanoplates. In line with the predictions of the giant oscillator strength effect in 2D we observe a strong increase of the radiative lifetime with temperature. This is attributed to an increase of the homogeneous transition linewidth with temperature. Comparing core only and hetero platelets we observe a significant prolongation of the radiative lifetime in type II platelets by two orders in magnitude while the quantum yield is barely affected. In a careful analysis of the PL decay transients we compare different recombination models, including electron hole pairs and exciton decay, being relevant for the applicability of those structures in photonic applications like solar cells or lasers. We conclude that the observed biexponential PL decay behavior in hetero platelets is predominately due to spatially indirect excitons being present at the hetero junction and not ionized e-h pair recombination

    A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals

    Get PDF
    In a comparative study we investigate the carrier–phonon coupling in CdSe based core-only and hetero 2D as well as 0D nanoparticles. We demonstrate that the coupling can be strongly tuned by the lateral size of nanoplatelets, while, due to the weak lateral confinement, the transition energies are only altered by tens of meV. Our analysis shows that an increase in the lateral platelet area results in a strong decrease in the phonon coupling to acoustic modes due to deformation potential interaction, yielding an exciton deformation potential of 3.0 eV in line with theory. In contrast, coupling to optical modes tends to increase with the platelet area. This cannot be explained by Fröhlich interaction, which is generally dominant in II–VI materials. We compare CdSe/CdS nanoplatelets with their equivalent, spherical CdSe/CdS nanoparticles. Universally, in both systems the introduction of a CdS shell is shown to result in an increase of the average phonon coupling, mainly related to an increase of the coupling to acoustic modes, while the coupling to optical modes is reduced with increasing CdS layer thickness. The demonstrated size and CdS overgrowth tunability has strong implications for applications like tuning carrier cooling and carrier multiplication – relevant for solar energy harvesting applications. Other implications range from transport in nanosystems e.g. for field effect transistors or dephasing control. Our results open up a new toolbox for the design of photonic materials.TU Berlin, Open-Access-Mittel - 201
    corecore