14 research outputs found

    Renal involvement in leptospirosis: new insights into pathophysiology and treatment

    No full text
    Acute renal failure (ARF) is one of the most common complications of leptospirosis although the causal mechanisms are still unclear. Diverse mechanisms are implicated in leptospiral nephropathy and new data supports the role of peculiar ion transport defects. Besides antibiotic therapy, ARF management in leptospirosis requires dialytic therapy which is most efficient when started early. Dialysis is the standard supportive therapy even though recent evidence suggests clinical benefit from alternative treatments such as plasmapheresis and hemofiltration. Renal recovery is achieved soon after clinical improvement. The comprehension of the primary mechanisms of renal dysfunction will be helpful in the development of additional therapeutic tools for improving supportive therapy for leptospiral nephropathy. This review discusses new insights into mechanisms implicated in leptospiral ARF and recent advances in treatment

    Hemodiafiltration Decreases Serum Levels of Inflammatory Mediators in Severe Leptospirosis: A Prospective Study

    No full text
    <div><p>Background</p><p>Leptospirosis is a health problem worldwide. Its most severe form is a classic model of sepsis, provoking acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI), with associated mortality that remains unacceptably high. We previously demonstrated that early initiation of sustained low-efficiency dialysis (SLED) followed by daily SLED significantly decreases mortality. However, the mode of clearance can also affect dialysis patient outcomes. Therefore, the objective of this study was to compare the effects of SLED with traditional (diffusive) clearance, via hemodialysis, and SLED with convective clearance, via hemodiafiltration (SLEDf), in patients with severe leptospirosis.</p><p>Methods</p><p>In this prospective study, conducted in the intensive care unit (ICU) from 2009 through 2012, we compared two groups—SLED (n = 19) and SLEDf (n = 20)—evaluating demographic, clinical, and biochemical parameters, as well as serum levels of interleukins, up to the third day after admission. All patients received dialysis early and daily thereafter.</p><p>Results</p><p>During the study period, 138 patients were admitted to our ICU with a diagnosis of leptospirosis; 39 (36 males/3 females) met the criteria for ARDS and AKI. All patients were on mechanical ventilation and were comparable in terms of respiratory parameters. Mortality did not differ between the SLEDf and SLED groups. However, post-admission decreases in the serum levels of interleukin (IL)-17, IL-7, and monocyte chemoattractant protein-1 were significantly greater in the SLEDf group. Direct bilirubin and the arterial oxygen tension/fraction of inspired oxygen ratio were significantly higher in the SLED group. We identified the following risk factors (sensitivities/specificities) for mortality in severe leptospirosis: age ≥ 55 years (67%/91%); serum urea ≥ 204 mg/dl (100%/70%); creatinine ≥ 5.2 mg/dl (100%/58%); Acute Physiology and Chronic Health Evaluation II score ≥ 39.5 (67%/88%); Sequential Organ Failure Assessment score ≥ 20.5 (67%/85%); and inspiratory pressure ≥ 31 mmHg (84%/85%).</p><p>Conclusions</p><p>The mode of dialysis clearance might not affect outcomes in severe leptospirosis.</p></div

    Rosiglitazone-enriched diet did not protect liver ischemia-reperfusion injury in a rat model Dieta enriquecida com rosiglitazona não protege a lesão de isquemia e reperfusão hepática em modelo experimental no rato

    Get PDF
    PURPOSE: To determine whether rosiglitazone-enriched diet offer protection in a classical model of liver ischemia-reperfusion injury in rats. METHODS: Two days before the experiment, rats were divided into 2 groups: Control Group (n=13) rats fed with standard diet; Rosi Group (n=13): rats fed with a powdered standard diet supplemented with rosiglitazone. The animals were submitted to liver ischemia-reperfusion by clamping the pedicle of median and left anterolateral lobes. After 1 hour of partial hepatic ischemia, the clamp was removed for reperfusion. After 2 or 24 hours (Control and Rosi Groups), blood was collected for enzymes and cytokines analysis. Ischemic and non-ischemic liver were collected for malondialdehyde analysis and histological assessment. Lungs were removed for tissue myeloperoxidase quantification. RESULTS: There were no statistical differences between groups for all analysed parameters. CONCLUSION: In this model, rosiglitazone-enriched diet did not protect liver against ischemia-reperfusion injury.<br>OBJETIVO: Determinar se a dieta enriquecida com rosiglitazona oferece proteção em um modelo clássico de lesão de isquemia e reperfusão hepática em ratos. MÉTODOS: Dois dias antes do experimento, os ratos foram divididos em 2 grupos: Grupo Controle (n=13): ratos alimentados com dieta padrão; Grupo Rosi (n=13): ratos alimentados com dieta em pó padrão enriquecida com rosiglitazona. Os animais foram submetidos à isquemia e reperfusão hepática por clampeamento do pedículo dos lobos médio e anterolateral esquerdo. Após 1 hora de isquemia, o clampe foi removido para a reperfusão. Após 2 ou 24 horas (Grupos Controle e Rosi), o sangue foi coletado para análise de enzimas e citocinas. Os fígados isquêmico e não isquêmico foram coletados para análise de malondialdeído e avaliação histológica. Pulmões foram removidos para quantificação da mieloperoxidase tecidual. RESULTADOS: Não houve diferenças estatísticas entre grupos em todos os parâmetros analisados. CONCLUSÃO: Nesse modelo, a dieta enriquecida com rosiglitazona não protegeu contra a lesão de isquemia e reperfusão hepática
    corecore