7 research outputs found

    Cytokines impact natural killer cell phenotype and functionality against glioblastoma in vitro

    Get PDF
    ObjectiveNatural killer (NK) cells are a part of the innate immune system and first-line defense against cancer. Since they possess natural mechanisms to recognize and kill tumor cells, NK cells are considered as a potential option for an off-the-shelf allogeneic cell-based immunotherapy. Here, our objective was to identify the optimal cytokine-based, feeder-free, activation and expansion protocol for cytotoxic NK cells against glioblastoma in vitro.MethodsNK cells were enriched from human peripheral blood and expanded for 16 days with different activation and cytokine combinations. The expansion conditions were evaluated based on NK cell viability, functionality, expansion rate and purity. The cytotoxicity and degranulation of the expanded NK cells were measured in vitro from co‑cultures with the glioma cell lines U‑87 MG, U‑87 MG EGFR vIII, LN-229, U-118 and DK-MG. The best expansion protocols were selected from ultimately 39 different conditions: three magnetic cell‑selection steps (Depletion of CD3+ cells, enrichment of CD56+ cells, and depletion of CD3+ cells followed by enrichment of CD56+ cells); four activation protocols (continuous, pre-activation, re-activation, and boost); and four cytokine combinations (IL-2/15, IL‑21/15, IL‑27/18/15 and IL-12/18/15).ResultsThe expansion rates varied between 2-50-fold, depending on the donor and the expansion conditions. The best expansion rate and purity were gained with sequential selection (Depletion of CD3+ cells and enrichment of CD56+ cells) from the starting material and pre-activation with IL‑12/18/15 cytokines, which are known to produce cytokine-induced memory-like NK cells. The cytotoxicity of these memory-like NK cells was enhanced with re-activation, diminishing the donor variation. The most cytotoxic NK cells were produced when cells were boosted at the end of the expansion with IL-12/18/15 or IL-21/15.ConclusionAccording to our findings the ex vivo proliferation capacity and functionality of NK cells is affected by multiple factors, such as the donor, composition of starting material, cytokine combination and the activation protocol. The cytokines modified the NK cells' phenotype and functionality, which was evident in their reactivity against the glioma cell lines. To our knowledge, this is the first comprehensive comparative study performed to this extent, and these findings could be used for upscaling clinical NK cell manufacturing

    DataSheet_1_Cytokines impact natural killer cell phenotype and functionality against glioblastoma in vitro.docx

    No full text
    ObjectiveNatural killer (NK) cells are a part of the innate immune system and first-line defense against cancer. Since they possess natural mechanisms to recognize and kill tumor cells, NK cells are considered as a potential option for an off-the-shelf allogeneic cell-based immunotherapy. Here, our objective was to identify the optimal cytokine-based, feeder-free, activation and expansion protocol for cytotoxic NK cells against glioblastoma in vitro.MethodsNK cells were enriched from human peripheral blood and expanded for 16 days with different activation and cytokine combinations. The expansion conditions were evaluated based on NK cell viability, functionality, expansion rate and purity. The cytotoxicity and degranulation of the expanded NK cells were measured in vitro from co‑cultures with the glioma cell lines U‑87 MG, U‑87 MG EGFR vIII, LN-229, U-118 and DK-MG. The best expansion protocols were selected from ultimately 39 different conditions: three magnetic cell‑selection steps (Depletion of CD3+ cells, enrichment of CD56+ cells, and depletion of CD3+ cells followed by enrichment of CD56+ cells); four activation protocols (continuous, pre-activation, re-activation, and boost); and four cytokine combinations (IL-2/15, IL‑21/15, IL‑27/18/15 and IL-12/18/15).ResultsThe expansion rates varied between 2-50-fold, depending on the donor and the expansion conditions. The best expansion rate and purity were gained with sequential selection (Depletion of CD3+ cells and enrichment of CD56+ cells) from the starting material and pre-activation with IL‑12/18/15 cytokines, which are known to produce cytokine-induced memory-like NK cells. The cytotoxicity of these memory-like NK cells was enhanced with re-activation, diminishing the donor variation. The most cytotoxic NK cells were produced when cells were boosted at the end of the expansion with IL-12/18/15 or IL-21/15.ConclusionAccording to our findings the ex vivo proliferation capacity and functionality of NK cells is affected by multiple factors, such as the donor, composition of starting material, cytokine combination and the activation protocol. The cytokines modified the NK cells' phenotype and functionality, which was evident in their reactivity against the glioma cell lines. To our knowledge, this is the first comprehensive comparative study performed to this extent, and these findings could be used for upscaling clinical NK cell manufacturing.</p

    Human CD4<sup>+</sup> T Cell Responses to the Dog Major Allergen Can f 1 and Its Human Homologue Tear Lipocalin Resemble Each Other

    No full text
    <div><p>Lipocalin allergens form a notable group of proteins, as they contain most of the significant respiratory allergens from mammals. The basis for the allergenic capacity of allergens in the lipocalin family, that is, the development of T-helper type 2 immunity against them, is still unresolved. As immunogenicity has been proposed to be a decisive feature of allergens, the purpose of this work was to examine human CD4<sup>+</sup> T cell responses to the major dog allergen Can f 1 and to compare them with those to its human homologue, tear lipocalin (TL). For this, specific T cell lines were induced <i>in vitro</i> from the peripheral blood mononuclear cells of Can f 1-allergic and healthy dog dust-exposed subjects with peptides containing the immunodominant T cell epitopes of Can f 1 and the corresponding TL peptides. We found that the frequency of Can f 1 and TL-specific T cells in both subject groups was low and close to each other, the difference being about two-fold. Importantly, we found that the proliferative responses of both Can f 1 and TL-specific T cell lines from allergic subjects were stronger than those from healthy subjects, but that the strength of the responses within the subject groups did not differ between these two antigens. Moreover, the phenotype of the Can f 1 and TL-specific T cell lines, determined by cytokine production and expression of cell surface markers, resembled each other. The HLA system appeared to have a minimal role in explaining the allergenicity of Can f 1, as the allergic and healthy subjects' HLA background did not differ, and HLA binding was very similar between Can f 1 and TL peptides. Along with existing data on lipocalin allergens, we conclude that strong antigenicity is not decisive for the allergenicity of Can f 1.</p></div

    Cytokine production by peptide-specific TCLs.

    No full text
    <p>Production of IL-4, IL-5, IFN-γ and IL-10 by the Can f 1, TL and HA-specific TCLs of allergic (•) and nonallergic (○) subjects upon stimulation with the peptides at 10 µM.</p

    Percentages of positive TCLs induced with Can f 1, TL and HA peptides.

    No full text
    <p>(<b>A</b>) Percentages of specific TCLs (mean±SEM) obtained per subject with 9 Can f 1 peptides, the corresponding 9 TL peptides, and one HA peptide (out of 30 replicate wells seeded). The TCLs were generated from PBMCs of allergic subjects (▪) and nonallergic subjects (□) with the split well method, as indicated in Methods. (<b>B</b>) Percentages of TCLs obtained per subject specific to individual Can f 1 (pC1–pC9) and TL (pTL1–pTL9) peptides. Asterisk (*) indicates Can f 1 peptides that were recognized significantly more frequently than their counterpart TL peptides (p<0.05 for all; See Results).</p

    Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes-Associated HLA Class II Molecules.

    Full text link
    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing β cells within the pancreas are destroyed. Identification of target Ags and epitopes of the β cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk
    corecore