1,218 research outputs found

    A note on the improvement ambiguity of the stress tensor and the critical limits of correlation functions

    Get PDF
    I study various properties of the critical limits of correlators containing insertions of conserved and anomalous currents. In particular, I show that the improvement term of the stress tensor can be fixed unambiguously, studying the RG interpolation between the UV and IR limits. The removal of the improvement ambiguity is encoded in a variational principle, which makes use of sum rules for the trace anomalies a and a'. Compatible results follow from the analysis of the RG equations. I perform a number of self-consistency checks and discuss the issues in a large set of theories.Comment: 15 page

    Infinite reduction of couplings in non-renormalizable quantum field theory

    Full text link
    I study the problem of renormalizing a non-renormalizable theory with a reduced, eventually finite, set of independent couplings. The idea is to look for special relations that express the coefficients of the irrelevant terms as unique functions of a reduced set of independent couplings lambda, such that the divergences are removed by means of field redefinitions plus renormalization constants for the lambda's. I consider non-renormalizable theories whose renormalizable subsector R is interacting and does not contain relevant parameters. The "infinite" reduction is determined by i) perturbative meromorphy around the free-field limit of R, or ii) analyticity around the interacting fixed point of R. In general, prescriptions i) and ii) mutually exclude each other. When the reduction is formulated using i), the number of independent couplings remains finite or slowly grows together with the order of the expansion. The growth is slow in the sense that a reasonably small set of parameters is sufficient to make predictions up to very high orders. Instead, in case ii) the number of couplings generically remains finite. The infinite reduction is a tool to classify the irrelevant interactions and address the problem of their physical selection.Comment: 40 pages; v2: more explanatory comments; appeared in JHE

    Higher-spin current multiplets in operator-product expansions

    Get PDF
    Various formulas for currents with arbitrary spin are worked out in general space-time dimension, in the free field limit and, at the bare level, in presence of interactions. As the n-dimensional generalization of the (conformal) vector field, the (n/2-1)-form is used. The two-point functions and the higher-spin central charges are evaluated at one loop. As an application, the higher-spin hierarchies generated by the stress-tensor operator-product expansion are computed in supersymmetric theories. The results exhibit an interesting universality.Comment: 19 pages. Introductory paragraph, misprint corrected and updated references. CQG in pres

    Low-energy Phenomenology Of Scalarless Standard-Model Extensions With High-Energy Lorentz Violation

    Full text link
    We consider renormalizable Standard-Model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu--Jona-Lasinio mechanism gives masses to fermions and gauge bosons, and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-N_{c} expansion, prove that there exists a broken phase and study the phase space. In general, the minimum may break invariance under boosts, rotations and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data, within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix and neutrino oscillations.Comment: 32 pages; v2: typos corrected, more references, some more comments - PR

    HyperK\"ahler quotients and N=4 gauge theories in D=2

    Full text link
    We consider certain N=4 supersymmetric gauge theories in D=2 coupled to quaternionic matter multiplets in a minimal way. These theories admit as effective theories sigma-models on non-trivial HyperK\"ahler manifolds obtained as HyperK\"ahler quotients. The example of ALE manifolds is discussed. (Based on a talk given by P. Fr\'e at the F. Gursey Memorial Conference, Istanbul, June 1994).Comment: 22 pages, Latex, no figure

    Search for flow invariants in even and odd dimensions

    Get PDF
    A flow invariant in quantum field theory is a quantity that does not depend on the flow connecting the UV and IR conformal fixed points. We study the flow invariance of the most general sum rule with correlators of the trace Theta of the stress tensor. In even (four and six) dimensions we recover the results known from the gravitational embedding. We derive the sum rules for the trace anomalies a and a' in six dimensions. In three dimensions, where the gravitational embedding is more difficult to use, we find a non-trivial vanishing relation for the flow integrals of the three- and four-point functions of Theta. Within a class of sum rules containing finitely many terms, we do not find a non-vanishing flow invariant of type a in odd dimensions. We comment on the implications of our results.Comment: 21 pages, v2: expanded introduction, published in NJ

    Renormalizable acausal theories of classical gravity coupled with interacting quantum fields

    Get PDF
    We prove the renormalizability of various theories of classical gravity coupled with interacting quantum fields. The models contain vertices with dimensionality greater than four, a finite number of matter operators and a finite or reduced number of independent couplings. An interesting class of models is obtained from ordinary power-counting renormalizable theories, letting the couplings depend on the scalar curvature R of spacetime. The divergences are removed without introducing higher-derivative kinetic terms in the gravitational sector. The metric tensor has a non-trivial running, even if it is not quantized. The results are proved applying a certain map that converts classical instabilities, due to higher derivatives, into classical violations of causality, whose effects become observable at sufficiently high energies. We study acausal Einstein-Yang-Mills theory with an R-dependent gauge coupling in detail. We derive all-order formulas for the beta functions of the dimensionality-six gravitational vertices induced by renormalization. Such beta functions are related to the trace-anomaly coefficients of the matter subsector.Comment: 36 pages; v2: CQG proof-corrected versio

    A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment

    Get PDF
    Ultrasound biomicroscopy is a non-invasive imaging technique, which allows high-resolution evaluation of the anatomical features of the anterior segment of the eye regardless of optical media transparency. This technique provides diagnostically significant information in vivo for the cornea, anterior chamber, chamber angle, iris, posterior chamber, zonules, ciliary body, and lens, and is of great value in assessment of the mechanisms of glaucoma onset. The purpose of this paper is to review the use of ultrasound biomicroscopy in the diagnosis and management of rare diseases of the anterior segment such as mesodermal dysgenesis of the neural crest, iridocorneal endothelial syndrome, phakomatoses, and metabolic disorders

    More on the Subtraction Algorithm

    Full text link
    We go on in the program of investigating the removal of divergences of a generical quantum gauge field theory, in the context of the Batalin-Vilkovisky formalism. We extend to open gauge-algebrae a recently formulated algorithm, based on redefinitions δλ\delta\lambda of the parameters λ\lambda of the classical Lagrangian and canonical transformations, by generalizing a well- known conjecture on the form of the divergent terms. We also show that it is possible to reach a complete control on the effects of the subtraction algorithm on the space Mgf{\cal M}_{gf} of the gauge-fixing parameters. A principal fiber bundle E→Mgf{\cal E}\rightarrow {\cal M}_{gf} with a connection ω1\omega_1 is defined, such that the canonical transformations are gauge transformations for ω1\omega_1. This provides an intuitive geometrical description of the fact the on shell physical amplitudes cannot depend on Mgf{\cal M}_{gf}. A geometrical description of the effect of the subtraction algorithm on the space Mph{\cal M}_{ph} of the physical parameters λ\lambda is also proposed. At the end, the full subtraction algorithm can be described as a series of diffeomorphisms on Mph{\cal M}_{ph}, orthogonal to Mgf{\cal M}_{gf} (under which the action transforms as a scalar), and gauge transformations on E{\cal E}. In this geometrical context, a suitable concept of predictivity is formulated. We give some examples of (unphysical) toy models that satisfy this requirement, though being neither power counting renormalizable, nor finite.Comment: LaTeX file, 37 pages, preprint SISSA/ISAS 90/94/E
    • …
    corecore