Recent tentative experimental indications, and the subsequent theoretical
speculations, regarding possible violations of Lorentz invariance have
attracted a vast amount of attention. An important technical issue that
considerably complicates detailed calculations in any such scenario, is that
once one violates Lorentz invariance the analysis of thresholds in both
scattering and decay processes becomes extremely subtle, with many new and
naively unexpected effects. In the current article we develop several extremely
general threshold theorems that depend only on the existence of some energy
momentum relation E(p), eschewing even assumptions of isotropy or monotonicity.
We shall argue that there are physically interesting situations where such a
level of generality is called for, and that existing (partial) results in the
literature make unnecessary technical assumptions. Even in this most general of
settings, we show that at threshold all final state particles move with the
same 3-velocity, while initial state particles must have 3-velocities
parallel/anti-parallel to the final state particles. In contrast the various
3-momenta can behave in a complicated and counter-intuitive manner.Comment: V1: 32 pages, 6 figures, 3 tables. V2: 5 references adde