146 research outputs found
On Invariance and Selectivity in Representation Learning
We discuss data representation which can be learned automatically from data,
are invariant to transformations, and at the same time selective, in the sense
that two points have the same representation only if they are one the
transformation of the other. The mathematical results here sharpen some of the
key claims of i-theory -- a recent theory of feedforward processing in sensory
cortex
Representation Learning in Sensory Cortex: a theory
We review and apply a computational theory of the feedforward path of the ventral stream in visual cortex based on the hypothesis that its main function is the encoding of invariant representations of images. A key justification of the theory is provided by a theorem linking invariant representations to small sample complexity for recognition – that is, invariant representations allows learning from very few labeled examples. The theory characterizes how an algorithm that can be implemented by a set of ”simple” and ”complex” cells – a ”HW module” – provides invariant and selective representations. The invariance can be learned in an unsupervised way from observed transformations. Theorems show that invariance implies several properties of the ventral stream organization, including the eccentricity dependent lattice of units in the retina and in V1, and the tuning of its neurons. The theory requires two stages of processing: the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to representations that are invariant to translation and scaling; the second, consisting of modules in IT, with class- and object-specific tuning, provides a representation for recognition with approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression. In the theory the ventral stream main function is the unsupervised learning of ”good” representations that reduce the sample complexity of the final supervised learning stage.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216
I-theory on depth vs width: hierarchical function composition
Deep learning networks with convolution, pooling and subsampling are a special case of hierar- chical architectures, which can be represented by trees (such as binary trees). Hierarchical as well as shallow networks can approximate functions of several variables, in particular those that are com- positions of low dimensional functions. We show that the power of a deep network architecture with respect to a shallow network is rather independent of the specific nonlinear operations in the network and depends instead on the the behavior of the VC-dimension. A shallow network can approximate compositional functions with the same error of a deep network but at the cost of a VC-dimension that is exponential instead than quadratic in the dimensionality of the function. To complete the argument we argue that there exist visual computations that are intrinsically compositional. In particular, we prove that recognition invariant to translation cannot be computed by shallow networks in the presence of clutter. Finally, a general framework that includes the compositional case is sketched. The key con- dition that allows tall, thin networks to be nicer that short, fat networks is that the target input-output function must be sparse in a certain technical sense.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216
The Macerata Shooting: Digital Movements of Opinion in the Hybrid Media System
The role of Twitter in the organisation of political action – either by supporting existing street-level protests or native digital mobilizations – has attracted a great deal of attention. However, the wider media, political, and cultural context in which mobilizations take place is often overlooked. In this article, we analyse the trajectory of a digital movement of opinion that reacted to the shooting of black people by a right-wing militant in the Italian town of Macerata in 2018. Using a dataset of 571,996 tweets captured over 31 days, and employing a mix of machine learning, network analysis and qualitative investigation, we study how factors both external and internal to the platform sealed the fate of that movement. We maintain that the permeability of Twitter to outer divided arenas and its re-intermediation by political leaders are key to the transformation of protest movements into polarised crowds
The Macerata Shooting: Digital Movements of Opinion in the Hybrid Media System
The role of Twitter in the organisation of political action – either by supporting existing street-level protests or native digital mobilizations – has attracted a great deal of attention. However, the wider media, political, and cultural context in which mobilizations take place is often overlooked. In this article, we analyse the trajectory of a digital movement of opinion that reacted to the shooting of black people by a right-wing militant in the Italian town of Macerata in 2018. Using a dataset of 571,996 tweets captured over 31 days, and employing a mix of machine learning, network analysis and qualitative investigation, we study how factors both external and internal to the platform sealed the fate of that movement. We maintain that the permeability of Twitter to outer divided arenas and its re-intermediation by political leaders are key to the transformation of protest movements into polarised crowds
On invariance and selectivity in representation learning
We study the problem of learning from data representations that are invariant to transformations, and at the same time selective, in the sense that two points have the same representation if one is the transformation of the other. The mathematical results here sharpen some of the key claims of i-theory—a recent theory of feedforward processing in sensory cortex (Anselmi et al., 2013, Theor. Comput. Sci. and arXiv:1311.4158; Anselmi et al., 2013, Magic materials: a theory of deep hierarchical architectures for learning sensory representations. CBCL Paper; Anselmi & Poggio, 2010, Representation learning in sensory cortex: a theory. CBMM Memo No. 26).National Science Foundation (U.S.) (Award CCF-1231216
Symmetry Regularization
The properties of a representation, such as smoothness, adaptability, generality, equivari- ance/invariance, depend on restrictions imposed during learning. In this paper, we propose using data symmetries, in the sense of equivalences under transformations, as a means for learning symmetry- adapted representations, i.e., representations that are equivariant to transformations in the original space. We provide a sufficient condition to enforce the representation, for example the weights of a neural network layer or the atoms of a dictionary, to have a group structure and specifically the group structure in an unlabeled training set. By reducing the analysis of generic group symmetries to per- mutation symmetries, we devise an analytic expression for a regularization scheme and a permutation invariant metric on the representation space. Our work provides a proof of concept on why and how to learn equivariant representations, without explicit knowledge of the underlying symmetries in the data.This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216
Deep Convolutional Networks are Hierarchical Kernel Machines
We extend i-theory to incorporate not only pooling but also rectifying nonlinearities in an extended HW module (eHW) designed for supervised learning. The two operations roughly correspond to invariance and selectivity, respectively. Under the assumption of normalized inputs, we show that appropriate linear combinations of rectifying nonlinearities are equivalent to radial kernels. If pooling is present an equivalent kernel also exist. Thus present-day DCNs (Deep Convolutional Networks) can be exactly equivalent to a hierarchy of kernel machines with pooling and non-pooling layers. Finally, we describe a conjecture for theoretically understanding hierarchies of such modules. A main consequence of the conjecture is that hierarchies of eHW modules minimize memory requirements while computing a selective and invariant representation.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216
- …