35 research outputs found

    Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds

    Full text link
    The microstructural, thermal, and nanomechanical characterization of biomass by-products coming from the food industry were studied. Scanning electron microscopy showed a microstructure formed by polygonal grains. The thermal behavior of seeds, evaluated by thermogravimetric analysis, revealed three main components (hemicellulose, cellulose, and lignin). Walnut shell showed the highest thermal stability and also the highest amount of lignin. The nanomechanical aspects were evaluated by nanoindentation. Samples with higher amount of cellulose presented minor modulus values. In accordance with the thermal stability, the highest modulus and hardness were observed in walnut. These by-products could be useful as reinforcement materials for biodegradable plastic industry.This work has been supported by the Spanish Ministry of Science and Innovation (MAT2011-28468-C02-02) and the Autonomous Government of Valencia (Spain) through the research program Geronimo Forteza (62/2010, 9 de Junio DOCV no 6291). M.P. Arrieta is granted by Santiago Grisolia program (GRISOLIA/2011/007).Rayón Encinas, E.; Ferrándiz Bou, S.; Rico Beneito, MI.; López Martínez, J.; Arrieta, MP. (2015). Microstructure, mechanical, and thermogravimetric characterization of cellulosic by-products obtained from biomass seeds. International Journal of Food Properties. 18(6):1211-1222. https://doi.org/10.1080/10942912.2014.884578S1211122218

    Low carbon construction using Guadua Bamboo in Colombia

    Get PDF

    Water vapour diffusion resistance factor of Phyllostachys edulis (Moso bamboo)

    Get PDF
    This study measured the water vapour diffusion resistance factor of the Moso bamboo specimens in all directions of the cylindrical coordinate system at both internode parts and node parts. The measurement was conducted by the dry cup method. Major findings included three aspects. The water vapour diffusion resistance factor results of Moso bamboo specimens present a decreasing trend from the external surface to the internal surface in the radial directions. This fact may be attributed to the more densified fibre cells and low quantity of pits at the external surface. The water vapour diffusion resistance factor of bamboo specimens is remarkably lower in the longitudinal direction than in the radial and tangential directions. The large diameter, high interconnectivity and straight structure of the vascular bundle vessel influence the lower water vapour diffusion resistance factor in the longitudinal direction. The majority of the node specimens demonstrated lower water vapour diffusion resistance factor values than the internode specimens in the radial and tangential directions. The irregular orientation of vascular bundle vessels in different directions can be considered as the reason

    Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia

    Get PDF
    Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture
    corecore