10 research outputs found

    Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    Get PDF
    We were supported by the Biotechnology and Biological Sciences Research Council grant BB/H001123/1 (P.W.), the Medical Research Council grants G0601498 and G1100546/2 (P.W.), Tenovus Scotland Grant G09/17 (A.J.M.) and the University of Aberdeen (P.W.). We thank O. Tüscher for discussion, P. Teismann and the microscopy core facility at the University of Aberdeen for the use of microscopy equipment, L. Strachan, A. Plano, S. Deiana for help with behavioral testing.Peer reviewedPublisher PD

    The Pentose Phosphate Pathway Regulates the Circadian Clock

    Get PDF
    The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.Peer reviewe

    Photoacoustic Tomography Detects Response and Resistance to Bevacizumab in Breast Cancer Mouse Models.

    No full text
    UNLABELLED: Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.This work was funded by Cancer Research UK (C14303/A17197 & C9545/A29580 - I Quiros-Gonzalez, M A Golinska, E Brown, L Ansel-Bollepalli, D-L Couturier, S E Bohndiek; C47594/A16267 – L Ansel-Bollepalli; C197/A16465 – M Tomaszewski). L Hacker was funded from NPL’s MedAccel programme financed by the Department for Businesses, Energy and Industrial Strategy’s Industrial Strategy Challenge Fund
    corecore