875 research outputs found

    Catalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application

    Get PDF
    Catalyst layers (4–20 lm) of rhodium (1 wt%) supported on alumina, titania, and ceria–zirconia (Ce0.5Zr0.5O2) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (6500 C) steam reforming of propane at a steam to carbon ratio equal to 3 and low contact time (0.01 s). The best catalytic activity for propane steam reforming was observed for titania and ceria–zirconia supports for which propane conversion started at 250 C and was more than three times better at 350 C than conversion measured on alumina catalyst. For all catalysts a first-order kinetics was found with respect to propane at 500 C. Addition of PEG 2000 in titania and ceria–zirconia sols eliminated the film cracking observed without additive with these supports. Besides, the PEG addition strongly expanded the porosity of the layers, so that full catalytic efficiency was maintained when the thickness of the ceria–zirconia and titania films was increased

    Catalytic coatings on stainless steel prepared by sol–gel route

    Get PDF
    Stainless steel (flat and microstructured) substrates have been coated with sol–gel catalysts made up of metal nanoparticles (Rh, Ni, Pt) dispersed on alumina and alumina–ceria supports. The aluminum monohydroxyde (boehmite) sols were synthesized by hot hydrolysis/peptization of an aluminum alkoxide (Yoldas method). It is shown that the rheological properties of the sol, especially the thixotropy, play a key role on the homogeneity and the quality of the film deposited on the metal substrate. The catalyst layers have a very good adhesion, a thickness which can be easily controlled (in the range 0.1 to 10 ÎŒm), a large specific surface area and a good mechanical and thermal stability

    Dust emission in powder handling: Free falling particle plume characterisation

    Get PDF
    Dust generation during solids handling, principally from the free falling of bulk materials and their impact on stockpiles, can be a health threat for operators and a cause of dust explosions. The proper design of a dust emission control system requires knowledge of the behaviour of the free falling jet, in particular the amount of air entrained by the falling powder and the concentration of dust liberated. The focus in this present paper is on the effect of drop height of a free falling jet on segregation by particle size, particle velocity, changes in particle concentration and entrained air in the dust plume. This gives a quantification of the important parameters and the concentration of dust emitted during a free fall

    3D numerical simulation of Circulating Fluidized Bed: comparison between theoretical results and experimental measurements of hydrodynamic

    Get PDF
    This work was realized in the frame of the European GAYA project supported by ADEME. This paper presents a description of the hydrodynamic into a CFB according to experimental measurements of gas pressure and solid mass flux. These experimental data are compared to three dimensional numerical simulation with an Eulerian approach. The obtained numerical results show that the applied mathematical models are able to predict the complex gas-solid behavior in the CFB and highlight the large influence of the particle wall boundary condition. Indeed, it is shown that free slip wall boundary condition gives a good prediction a solid mass flux profile in comparison with experimental measurements nevertheless a convex shape. Moreover, the numerical solid hold-up is underestimated compared to the experimental data. On the contrary, a no-slip boundary condition improves the profile shape of solid mass flux but highly overestimates its intensity and the solid hold-up. A compromise appears to be a friction particle-wall boundary condition such as Johnson and Jackson (1) but the model parameters have to be chosen very carefully especially the restitution coefficient

    Granular flows down inclined channels with a strain-rate dependent friction coefficient. Part I: Non-cohesive materials

    Get PDF
    The flow of a granular material down an incline of finite width with a strain-rate dependent coefficient of friction and a conical yield criterion is semi-analytically obtained using a characteristic method for flows on a deep layer of grains. This analysis leads to a flow field with three distinct zones: a Bagnold-flow zone below the free surface, a dead zone and a matching zone between the two, linked to slippage at the wall. A good agreement between the computed flow field and experimental data is obtained

    VisiĂłn actual del problema de los invĂĄlidos y de sus soluciones

    Get PDF

    Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol–gel coating on martensitic stainless steel

    Get PDF
    Stainless steels are increasingly used in the aeronautics field for the manufacture of structural parts. One of them, the X13VD martensitic stainless steel (X12CrNiMoV12-3), known for its good mechanical properties, has a poor corrosion resistance in confined or severe environments. In the past years, Cr(VI) based pre-treatments have been currently used for corrosion protection of different metals, however, they are toxic and due to environmental regulations, they will be definitely banned in a near future. Alternatives to replace Cr(VI) show advantages and drawbacks considering key properties such as: corrosion resistance, adhesion of coatings, fatigue resistance, durability and reliability. However, some of their possible alternatives show high potential. In this paper, a process was developed to improve the corrosion resistance of the martensitic stainless steel. Organic–inorganic hybrid coatings with different cerium concentrations were deposited onto stainless steel by sol–gel process. Corrosion resistance of the coatings was evaluated by electrochemical impedance measurements and it has been proved that cerium concentration of 0.01 M into hybrid coating was an optimal content. Adhesion tests were also carried out by "nanoscratchtest" to characterize the coatings mechanical properties as a function of cerium concentration but results do not clearly show the influence of cerium for the coating adhesion toward the substrate. To try to correlate with the electrochemical properties, liquid 29Si NMR spectroscopy was then performed to investigate hydrolysis and condensation reactions of sol–gel process, and by this method, it was demonstrated that for higher cerium concentration (>0.01 M) there is a modification of the chemical structure of the sol–gel network

    Co-production of the car as a ‘service': involving customers in the value chain

    Get PDF
    This article is dealing with a possible scenario for the future of the automobile thanks to the shift from an artefact vision to a services vision by which the customer might be involved as a true partner in the design of cars. This paper is therefore quite speculative but is challenging the supposedly stabilised relationship between the OEMs and their ultimate clients.Automobile ; Customers ; Co-makership ; Service ; Value chain

    ORIGINALES: La obra de Pasteur y de Lister en la cirugĂ­a moderna

    Get PDF
    • 

    corecore