
  
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
                      To link to this article: DOI: 10.1016/j.powtec.2010.08.046 
                       URL : :http://dx.doi.org/10.1016/j.powtec.2010.08.046  
 
 
 
 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 5549 

To cite this version:  
Fenech, Justine and Dalbin, Michel and Barnabé, Antoine and Bonino, 
Jean-Pierre and Ansart, Florence Sol–gel processing and characterization 
of (RE-Y)-zirconia powders for thermal barrier coatings. (2011) Powder 
Technology, vol. 208 (n° 2). pp. 480-487. ISSN 0032-5910 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers 
and makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes.diff.inp-toulouse.fr 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12043062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.powtec.2010.08.046
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes.diff.inp-toulouse.fr


Sol–gel processing and characterization of (RE-Y)-zirconia powders for thermal

barrier coatings

J. Fenech a,⁎, M. Dalbin b, A. Barnabe a, J.P. Bonino a, F. Ansart a

a Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 route de Narbonne, 31062 Toulouse cedex 09, France
b DGA-DGE-CEAT, 47 rue St Jean-BP93123, 31131 Balma Cedex, France

a b s t r a c t

The effect of doping on the structural, morphological and thermal properties of ZrO2–XO1.5 (X=Y, La, Sm, Er)

solid solutions for thermal barrier (TBC) applications was investigated. Oxide powders of various

compositions from 9.7 to 40 mol% XO1.5 (X=Y, La, Sm, Er) were synthesised by the sol–gel route. The

structural analysis of the powders was performed using X-ray diffraction analysis coupled with Rietveld

refinements and the measurement of their specific surface area with the BET method. For each rare earth

dopant, the morphology of the powders varies from monoliths to agglomerates of thinner particles when the

doping amount increases. In order to determine the specific heat, the thermal diffusivity at room temperature

and the thermal expansion coefficient of some selected compositions, DSC, laser thermal diffusivity and high-

temperature dilatometry measurements were performed on samples densified by Spark Plasma Sintering.

Working thermal characterisation indicated that zirconia doped with 30 mol% SmO1.5 and ErO1.5 have better

insulation properties and a lower thermal expansion coefficient than our reference YSZ ceramic. These various

compositions are very promising for the elaboration of multilayer TBCs by the sol–gel process.

1. Introduction

Nowadays, the increase of the operation temperature in turbines

to get more powerful engines requires the need to decrease as much

as possible the thermal conductivity of the thermal barrier coatings

(TBCs) in order to protect and maintain superalloys' thermo-

mechanical performance. The most widely used ceramic is yttria

stabilised zirconium (YSZ) because this ceramic presents, in some

conditions, the metastable tetragonal t′ phase, essential for the

structural hardening during cooling [1]. Two physical-route processes,

giving quite different microstructures of coatings, are largely used to

elaborate YSZ TBCs. Plasma Sprayed (PS) coatings present a lamellar

microstructure with a low thermal conductivity in the range of 0.7–

0.9 W m−1K−1 [2]. In parallel, Electron Beam Physical Vapour

Deposition (EB-PVD) coatings [3] with columnar microstructure

coatings present the best mechanical performance. But perpendicular

orientation of the columns makes their thermal conductivity twice

higher than PS coatings [4]. In order to further enhance thermal

stability and decrease thermal conductivity of zirconia ceramics at

elevated temperature, research is focused on developing lower

thermal conductive TBC materials [5–8]. Promising ceramic materials

are rare earth (RE) zirconia with a different doping content [9–12].

Zirconates with a general formula of Re2Zr2O7 are reported to have

very low thermal conductivity [13]. The La2Zr2O7 pyrochlore phase is

particularly interesting because of its low thermal conductivity [14]

and high melting point (2700 °C). Furthermore, no phase transfor-

mation between room temperature and the operation temperature

are expected occur [15]. However the major disadvantage is its low

thermal expansion coefficient (9.1×10−6K−1) compared to the

metallic substrate one, which is not very interesting for shaping a

monolayer TBC. Nevertheless, some studies present LaSm2Zr2O7

ceramic as a promising material due to a lower thermal conductivity

compared to La2Zr2O7 and a higher thermal expansion coefficient [16].

Progress has also been made in developing multilayer TBC systems in

which each layer carries out a particular function [17–24]. The top

layers have to limit the thermal transfer. The layer at the surface of the

metallic substrate, generally the YSZ layer with a thermal expansion

coefficient (10·10−6K−1 to 12·10−6K−1) close to the nickel-based

superalloy (14·10−6K−1), facilitates thermal expansion matching

(cf. Fig. 1).

If the choice of new doping elements and new architectures are

being considered, the type of coating process is also a parameter to

take into account for optimising the isolating properties of TBCs. The

classical EB-PVD and Plasma Spray are directional methods often

requiring costly investments and complicated operations, while the

chemical sol–gel route has been investigated for a few years as an

alternative process to prepare, by suitable chemical modifications,

nanocrystalline materials [25]. Combined with the dip-coating

process, it is a versatile process able to produce either thin ceramic
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coatings or thick deposits. Moreover, as well as being a nondirectional

deposition technique, the main advantage of the sol–gel method is to

decrease the crystallisation temperature to a value much lower than

conventional processes [25–27].

The shaping of sol–gel TBCs by dip-coating requires the formulation

of stable composite sols composed by ceramic powders with controlled

structures, morphologies and thermal properties. For this reason, the

present study focuses on the elaboration and the characterisation of solid

solutions of zirconia doped with yttrium, lanthanum, samarium and

erbium. This paper investigates the influence of the doping content on

the structural and morphological properties of the powders. Subse-

quently, X-ray analyses and Rietveld refinements were performed to

determine the crystallographic properties of the synthesised powders.

Specific surface areameasurements using theBETmethod, in association

with amorphological study bySEMmicroscopywere investigated. Some

of the different powders were selected for an intrinsic thermal

characterisation. Thermal diffusivity and thermal dilatation measure-

ments — two important properties for TBC applications — were

performed on dense samples.

2. Experimental section

2.1. Synthesis of doped zirconia powders

Zirconia precursor gels with 9.7 mol% YO1.5 were synthesised

because the resulting powder presents the desired t′ phase and

remains our reference material for sol–gel TBCs applications [28].

Then, zirconia gels with a range of 9.7–40 mol% LaO1.5, SmO1.5 and

ErO1.5 were also prepared by the sol–gel process. As indicated

previously, the lower value corresponds to the reference and the

upper value corresponds to a new investigated phase. In fact, the aim

was to investigate the different crystallographic systems that can be

formed in this large range of doping concentration. Compounds with

40 mol% doping content allow synthesis of the insulating pyrochlore

phase, as it can be observed on the phase diagrams of ZrO2–La2O3 and

ZrO2–Sm2O3. All syntheses have been done in 1-propanol (solvent,

Acros Organic, purityN99%), acetylacetone (AcAc, Aldrich, purity

N99%) and water system. Nitrate hexahydrate salts, including yttrium

(III), lanthanum (III), samarium (III) and erbium (III) salts (X(NO3),

6H2O (X=Y, La, Sm, Er), purityN99%, Acros Organics), and zirconium

(IV) propoxide (Zr(OPr)4, Aldrich), were chosen as precursors. The

different reagents are introduced into the mixture in an order as

presented on the flowchart in Fig. 2. Acetylacetone, used as a

complexing agent, prevents the reaction of the alkoxide with water,

which is an important procedure to ensure success of the synthesis.

Furthermore, all the syntheses were performed under argon atmo-

sphere to avoid the problem of fast hydrolysis of alkoxide with water.

The molar ratios [AcAc]/[Zr(OPr)4] and [H2O]/[Zr(OPr)4] are 0.7 and

8.5 respectively; and the zirconium propoxide concentration is kept

constant at 0.5 mol/L. The gelation reactions, hydrolysis and conden-

sation reactions were carried out at room temperature in ambient

atmosphere. Once ready, the sols are mechanically stirred for half an

hour and then dried in an oven at 50 °C until they gelify after a few

hours.

2.1.1. Annealing

After drying, xerogels were sintered at 950 °C for 3 h in air

(heating rate: 100 °C/h) to obtain the desired oxide materials.

Zirconium powders doped with yttrium, lanthanum, samarium,

erbium are referred to as YSZ, LZ, SZ, EZ respectively. The number

before YSZ, LZ, SZ and EZ corresponds to the molar percentage of

dopant XO1.5 (X=Y, La, Sm, Er).

2.1.2. Spark Plasma Sintering (SPS)

Spark Plasma Sintering (SPS) was used only for the thermal

measurements. Powders with the required compositions were sintered

using the SPS device (Dr. Sinter, SPS 2080) at the University of Toulouse

(France), to obtain dense samples with 2 mm thickness and 15 mm

diameter. The Spark Plasma Sintering is a new sintering technique used

for rapid densifications at moderate temperature compared with

conventional sinterings [29]. The powders were put into a graphite

die in which both die wall and the surface of the powder were covered

by graphite foils. The DC current density was kept equal to 200 A cm−2

with 3 ms pulse sequences, and a vaccum level of 2–3 Pa was

maintained during the sintering process. The samples were compacted

at 1000 MPa and the treatment temperature is 1000 °C for 5 min and

1200 °C for 20 min for YSZ and RE zirconia respectively.

Thermal accomodation 

Pyrochlore or tetragonal phase Thermal insulation 

Yttria doped zirconia with t’ phase 
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YSZ 

Duplex system 
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Fig. 1. New architecture for thermal barrier coating systems.
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Fig. 2. Procedure of the sol–gel synthesis for doped zirconia powders.



2.2. Characterisation methods

2.2.1. Structural analysis by XRD

The structural analysis of the synthesised materials was performed

using X-ray Diffraction coupled with Rietveld Refinement. The

patterns were collected at room temperature in the range of 20°–

100° with a Brucker AXS D4 diffractometer. Copper radiation has been

used as theX-ray source (λ(CuKα1)=1.5406 Å;λ(CuKα2)=1.5445 Å)
and filtered with Ni filter. The peak identificationwas conducted using
the JCPDS database. For the tetragonal, fluorite and pyrochlore phases,
the space group used for Rietveld refinement were P42/nmc (137) and
Fm3m (225), Fd3m (227 respectively).

2.2.2. Measurement of the specific surface area of the powders

The specific surface areaSw (m2g−1) of thepowders calcinedat950 °C
was determined by the BET method using N2 adsorption–desorption at
77 K. All powderswerefirst degassed at 250 °C for 40 min before nitrogen
adsorption.

2.2.3. Microstructure

The morphology of the samples was determined using a JEOL JSM-
6400 SEM and a FEG 6700 F SEM with a field emission gun.

2.2.4. Measurement of thermal properties

Dense cylindric specimens of (RE-Y) zirconia powders with
both 9.7 and 30 mol% doping content were prepared by Spark Plasma
Sintering (SPS) for the investigation of their thermal diffusivity, heat
specific capacity and thermal expansion coefficient. These three
intrinsic thermal properties were determined on specific devices at
the aeronautic test centre of Toulouse (C.E.A.T., Toulouse, France).

2.2.4.1. The specific heat capacity (cp). The specific heat capacity (cp)
was measured as a function of temperature between room temper-
ature and 800 °C in argon atmosphere, using a differential scanning
calorimeter DSC (Model SETARAM DSC111). Sapphire (Ref: SRM 720)
is the reference material used for the calibration of the system. We
processed by steps with a succession of 5 °C/min heating rate and
isothermal stages every 30 °C.

2.2.4.2. Thermal diffusivity. Values for the thermal diffusivity (Dth) of
the samples were obtained at room temperature using the laser-flash
method (SOPRA 2000). This method consists of heating the front face
of the sample by a uniform laser beam in order to detect the
temperature increase on its rear surface by an infrared detector. A
graphite film was deposited on the two surfaces of the samples to
guarantee the absorption and the detection of the IR radiation just on
the sample surfaces; and measurements have been done under argon.
The thermal conductivity λ of the selected compounds at room
temperature was calculated using Eq. (1), where ρ is the bulk density
of the sample measured by the Archimedes method. Each sample was
measured four times at ambient temperature.

λ = DthðTÞcpðTÞρðTÞ: ð1Þ
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Fig. 3. XRD patterns of doped zirconia powders calcined at 950 °C. Nomenclature:
* tetragonal phase ; ° pyrochlore phase; •

fluorite phase.

Table 1

Summary of the structural analysis of the doped zirconia powders synthesised via sol–
gel process.

Powders Phases Cell parameters (Å) c/af

9.7 YSZ t′ a=3.6129(5); c=5.162(2) 1.0101(6)

9.7 LZ t major phase a=3.605(2); c=5.195(3) 1.018(1)
Pyr

15 LZ t major phase a=3.6184(5); c=5.198(1) 1.0158(3)
Pyr

20 LZ t major phase a=3.6242(7); c=5.203(2) 1.0151(6)
Pyr

30 LZ Pyr a=10.601(4)
40 LZ Pyr a=10.580(5)
9.7 SZ t a=3.6132(2); c=5.1838(4) 1.1447(1)
15 SZ C major phase a=5.144(1)

t′
20 SZ C a=5.163(8)
30 SZ C a=5.177(2)
40 SZ C major phase a=5.2090(8)

Pyr
9.7 EZ t a=3.6010(2); c=5.1650(4) 1. 0142(1)
15 EZ C a=5.1296(6)
20 EZ C a=5.1341(4)
30 EZ C a=5.142(1)
40 EZ C a=5168(1)



Fig. 4. SEM micrographs of the (RE-Y) zirconia powders calcined at 950 °C: (a) YSZ powder— (b) influence of the doping content on the microstructure of LZ powders— (c) influence

of the nature of the doping on the microstructure of RE zirconia powders.



In this study, the thermal diffusivity values were only determined at

room temperature. We have to underline the fact that the aim of this

work is to establish a rank of these selected materials according to their

thermal conductivity, since we strongly expect the same hierarchy at

higher temperatures in the range of 800 °C–1200 °C (operating

temperatures of the turbomachines). In fact, the main interest of this

study is to discriminate and to select, among these samples, the most

interesting materials for shaping the future sol–gel TBCs, rather than

studying the thermal conductivity as intrinsic values.

2.2.4.3. Thermal expansion coefficient. The measurement of the thermal

expansion coefficient (TEC) of the selected compounds was performed

using a high-temperature dilatometer (SETARAM DHT 2400) from room

temperature to 1050 °C (heating rate: 5 °C/min) under argon. This

characterisation consists of studying the temperature-dependent change

of length of the material. The samples are parallelepipeds (5 mm×
10mm) sawed in the cylindric samples densified by SPS.

3. Results and discussion

3.1. Structural analysis of the ceramic powders

YSZ powder elaborated via sol–gel route was previously studied
[28]. To sum up, 9.7 YSZ compound crystallises in the metastable
tetragonal phase (t′ phase) with a tetragonality close to 1.010.

Fig. 3a presents the X-ray diffraction patterns relative to the LZ
powders with a variable doping concentration. It clearly shows the
evolution of the crystalline structure when themolar lanthanum content
increases. Up to 20 LZ, thepowders crystallise essentially in the tetragonal
structure since the observed diffraction peaks relative to the pyrochlore
La2Zr2O7phase arenotwell definedandhavea low intensity. 30 LZand40
LZ powders change from a quadratic phase to a pure pyrochlore phase.
The fourmain diffraction peaks identifiedwith the JCPDS database (073–
444) are typical of this phase. Moreover, the shift of the (222) diffraction
peak towards the higher angles is observedwhen the lanthanum content
increases. This is indicative of a decrease in the cell parameters between
30 LZ (10.601(4)Å) and 40 LZ (10.580(5)Å).

SZ powders present 3 crystalline structures according to the doping
content (see Fig. 3b). The tetragonal phase appears for 9.7 SZ. 15 SZ is
composed by a minor tetragonal phase and a major cubic (c) phase. The
pyrochlore phase Sm2Zr2O7 is also appearing in the 40 SZ compound but
its proportion in the solid solution is very low compared to the cubic
phase.

The values of tetragonality (Table 1) indicate thatwhatever the nature
of doping (lanthanumor samarium), the ratio c/a

ffiffiffi

2
p

decreaseswhen the
amount of dopant increases. This result has been already noticed for YSZ

powders with various amounts of yttrium [28]. Powders doped with
erbiumpresent both tetragonal and cubic phases. 9.7 EZ powder is a pure
tetragonal solid solution whereas for 15 EZ to 40 EZ the powders
crystallise in the cubic form. The shift of the diffraction peaks towards the
lower angles observed in Fig. 3c with the increase of the erbium content
indicates an increase in the unit cell parameters. This phenomenon is
likely due to the expansion of the unit cell when increasing the
substitution of Zr4+ atoms by Er3+ atoms,which has a higher ionic radius.

3.2. Morphological analysis of the ceramic powders

Fig. 4 presents the different morphologies of the rare earth zirconia
powders after heat treatment at 950 °C. The observation of the different
compositions by scanning electronic microscopy suggests some identical
microscopic characteristics between the three rare earths used (Fig. 4b,c).
We can notice that for the lower doping content (9.7 mol%), powders
exhibit hard particleswhose size varies in the range of 20 μm–50 μm. The
reference starting material 9.7 YSZ exhibits the same microstructure
(Fig. 4a). With the increase of the substitution concentration of zirconia,
these particles becamemuch smaller as it is observed for 20 LZ.When the
rareearthcontent increases above20 mol%, themicrostructuredrastically
changes,withpowderspresenting agglomerates of thinnerparticles anda
more homogeneous granulometry. Moreover, the hard particle popula-
tion has totally disappeared. The changing of the crystalline structure
(t→Pyr for LZ powders or t→c for SZ powders) contributes to the
morphological evolution in doped zirconia powders. In fact, after the
identical heat treatment at 950 °C, the increase of the number of inserted
rare earth atoms in the zirconia lattice improves the particle brittleness.

The microstructure of the LZ powders can be correlated with the
specific surface area measurements (Fig. 5) which shows that the Sw
values increase from 2–4 m2g−1 for 9.7 LZ–20 LZ to 14 m2g−1 for 40 LZ.
This evolution is directly linked to the increase in doping. However for the
SZ and EZ powders, the variation of Sw values is not significant since
whatever the doping content, Sw values are inferior to 10 m

2 g−1. The fact
that some porosity (cf. Fig. 4(b) (30 EZ powder)) are not accessible by the
BET method may be an explanation.
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Table 2

Crystalline structure of the densified ceramic bulks.

Samples SPS compaction time and temperature Crystalline structure

9.7 YSZ 5 min at 1000 °C t′
9.7 LZ t
9.7 SZ t
9.7 EZ C

20 min at 1200 °C
30 LZ Pyr
30 SZ C
30 EZ C
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Fig. 6. XRD patterns of 30 LZ, 30 SZ and 30 EZ bulk ceramics. Nomenclature: ° pyrochlore
phase; • fluorite phase; * peak of the carbon graphite used for the densification of the bulk
ceramics by SPS.



3.3. Thermal properties of the selected compounds

Besides their thermal properties, the powders have to exhibit both

interestingmorphologies and specific surfacearea inorder to facilitate the

formulation of stable slurries for the dip-coating process. For this reason,

the compositions 30 LZ, 30 SZ and 30 EZ have been selected because of

their microstructure with soft agglomerates of small particles. 30 LZ has

alsobeenselectedbecause thepyrochlorephase is knowntopresent good

thermal-insulation properties. In this study, the key point is to compare,

for an identical doping content, the influence of the nature of the rare

earth on the thermal conductivity and the thermal expansion. This study

will be also done for the powders with a 9.7 mol% doping amount.

3.3.1. Thermal conductivity of the selected compounds

Densified samples were required for the measurement of the specific

heat capacity, thermal diffusivity and thermal expansion of the zirconia

powders doped with 9.7 mol% and 30 mol% XO1.5 (X=Y, La, Sm, Er). The

relative densities of these sintered ceramics, given in Table 2, are in the

range of 90–96%. Apart from a compaction temperature of 1200 °C for the

rare earth ceramics, no transformation phase has occurred. For example,

the diffraction patterns of the 30 mol% RE-Z bulk ceramic after SPS

sintering are presented in Fig. 6. On these diagrams, we notice that the

phases previously obtained at 950 °C are preserved after a thermal

treatment and processing at 1200 °C. In parallel, a microstructural study

has been performed on these three bulk ceramics and also on the same

samples with 9.7 mol% doping content (Fig. 7). It reveals grains with a

homogeneous size for each sample and also a grain growth for 30 mol%

compared to 9.7 mol%. Some pores may appear for the two selected

doping rates, but in general, the densification of the bulks due to the

coalescence of the grains is sufficient to ensure good thermal diffusivity

measurements.Moreover, for a doping rate of 30 mol%, it can be observed

that the densification state depends on the substituting trivalent rare

earth cation.

The specific heat capacity curves of the selected bulk ceramics as a

function of temperature are plotted on Fig. 8. For all of them, the specific

heat increases with the increase of temperature under similar

temperature conditions. Moreover, for each sample, the experimental

1µm 1µm 1µm

9.7 LZ 9.7 EZ9.7 SZ

30 LZ

1µm

30 EZ30 SZ

1µm 1µm

Fig. 7. Bulks of the rare earth zirconia samples densified by Spark Plasma Sintering (SEM-FEG micrographies).
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Table 3

Comparison between the experimental and the theoretical values of the molar heat

capacity (cpm (J.mol−1K−1)) calculated according to the Neumann–Kopp rules.

Samples Experimental values at 298 K Theoretical values at 298 K

cp (J kg−1 K−1) cpm (J mol−1 K−1) cpm (J mol−1 K−1)

9.7 YSZ 470 57.4 55.7

9.7 LZ 445 56.5 56.0

9.7 SZ 442 56.5 56.4

9.7 EZ 440 57.1 56.0

30 LZ 418 239 221

30 SZ 410 56.8 56.7

30 EZ 405 58.2 56.0



molar heat capacity cpm (J mol−1 K−1) of themixed oxides corresponds

to the contributions of the two individual ones, which is consistentwith

the Neumann–Kopp rule [30] (cf. Table 3). Eqs. (2) and (3) presented

below have been verified:

CpmðZrð1−xÞRexO2−x=2Þ = ð1−xÞCpmðZrO2Þ + x = 2CpmðRe2O3Þ ð2Þ

CpmðLa2Zr2O7Þ = 2CpmðZrO2Þ + CpmðLa2O3Þ ð3Þ

The thermal conductivities λ of the selected samples, calculated

according to Eq. (1)with the thermal diffusivity values, specific heats and

density, are presented in Table 4. The reported values are the arithmetic

average of 4 measurements performed on each ceramic. According to

the theory, the lattice thermal conductivity is proportional to the freepath

of phonons [31]. When substituting two Zr4+ by two trivalent cations

like Y3+, La3+, Sm3+, Er3+, one oxygen vacancy is created in the lattice to

maintain its electroneutrality. Moreover, the concentration of oxygen

vacancies will increase with the content of X2O3 (Re=La, Sm, Er). As a

consequence, the thermal conductivity of the ceramics will decrease

when the doping content is increased due to the scattering of the phonon

via these oxygen vacancies. The experimental results confirm the theory:

for a same doping element, the thermal conductivity is decreasing when

increasing theXO1.5 content (X=La, Sm, Er). As a result, 30 LZ, 30SZand

30 EZ exhibit better insulating properties than 9.7 LZ, 9.7 SZ, 9.7 EZ

respectively, which can be also correlated to the grain growth observed

at higher doping concentration (Fig. 7). Moving on to the influence of

the nature of the dopant for a given doping amount,we can observe that

samarium doping gives a lower thermal conductivity than erbium. This

can be explained by a higher ionic radius for the Sm3+ cations

(0.1079 nm) compared to the Er3+ cations (0.1004 nm). The increase

of the ionic radius of the substituting atoms limits the mean free path of

phonons and thus leads to a lower thermal conductivity.

From the values obtained in Table 4, samarium and erbium doped

zirconia ceramicswithacontrolled stoichiometryarepotential candidates

for high-temperature and thermal-insulation applications since they

already give interesting insulating values at room temperature, assuming

that these values can be extrapolated at higher temperatures. This

speculation will have to be confirmed later. It is difficult to conclude for

the doping with lanthanum. Except for 30 LZ, the thermal conductivity of

the selected compounds at room temperature is located in the range of

1.52–2.41 W m−1K−1, which is lower than the fully dense ZrO2–7 wt.%

Y2O3 (3.0 W m−1K−1) as reported by Wu et al. [13].

3.3.2. Thermal expansion characteristics of the selected samples

Fig. 9 presents the thermal expansions of the selected compounds

in the range of 20 °C–1050 °C. As it can be seen on the figure, 9.7 YSZ,

9.7 LZ, 9.7 SZ, 9.7 EZ, 30 SZ and 30 EZ exhibit the same behaviour:

the linear thermal expansion increases with respect to temperature.

When it increases, the average atomic distance increases too, so the

linear thermal expansion becomes more important. The nature of the

dopant does not seem to influence the behaviour under temperature:

the curves relative to 9.7 YSZ, 9.7 SZ and 9.7 EZ are quite identical,

giving rise to TEC constant at 11.24×10−6K−1, 11.31×10−6 K−1,

11.32×10−6 K−1 respectively. Furthermore, the TEC of 9.7 YSZ is

close to the TEC of 3YSZ (11.5×10−6 K−1) as reported by Cao et al. [6].

Fig. 9 and the values in Table 5 also indicate that the TEC of 30 SZ and

30 EZ are lower than 9.7 SZ and 9.7 EZ. LZ powders exhibit a quite

different behaviour at the same temperature conditions. Actually, 9.7

LZ exhibits a lower TEC than 9.7 SZ and 9.7 EZ. Concerning the 30 LZ

compound, the thermal expansion first increases linearly from 20 °C

to 800 °C, then decreases from 800 °C to 900 °C, before finally

increasing from 990 °C to 1050 °C. This phenomenon is atypical for

this sample composed only by the pyrochlore phase which exhibits no

transformation phase under temperature. However, this low expan-

sion can be correlated to the pure pyrochlore phase that constitutes

this sample. We notice that whatever the nature of the doping, the

TEC of the selected ceramics decreases with the increasing XO1.5

doping content (X=La, Sm, Er). This can be explained by the effect of

filling the lattice by cations with a bigger radius. This induces a

limitation in the lattice displacement. But this hypothesis is not in

agreement with the works of Liu et al. who showed that the TEC of

SmxZr1−xO2−x/2 (0.2b×b0.5) ceramics increases with the increasing

Sm2O3 content under temperature conditions [32].

4. Conclusion

ZrO2–XO1.5 (X=Y, La, Sm, Er) solid solutions with doping contents

in the range of 9.7–40 mol%. XO1.5 were synthesised by the sol–gel

process for thermal barrier applications. For each compound,

structural and microstructural analyses were performed. LZ powders

moves from a pure tetragonal structure for a low doping concentra-

tion, to a pure pyrochlore phase for 30 LZ. Samarium and erbium

doped zirconia powders crystallise mainly in the cubic form. The

microscopic study suggests quite a similar behaviour between these

rare earth doping elements. For each of them, the microstructure

moves from compact monoliths (20 μm–50 μm) with heterogeneous

size to agglomerates of thinner particles for an average doping

amount of 20 mol%. This new structure can explain the higher specific

surface areas of the compounds when increasing the doping content.

The ceramics (heat treated at 950 °C) with a doping amount of 9.7 and

30 mol% were hot-pressed using the Spark Plasma Sintering method

Table 4

Summary of the characteristics at room temperature for the selected samples densified

by Spark Plasma Sintering.

Samples Density cp extrapolated Dth λ

(J kg−1 K−1) (10−6 m2 s−1) (W m−1 K−1)

9.7 YSZ 90 470 0.85 2.14

9.7 LZ 90 445 1.43 3.47

9.7 SZ 90 442 0.78 1.91

9.7 EZ 91 440 0.91 2.08

30 LZ 94 418 1.01 2.41

30 SZ 96 410 0.61 1.59

30 EZ 92 405 0.64 1.69
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Fig. 9. Linear thermal expansion of the selected compounds between room temperature

and 1300 K.

Table 5

Average thermal expansion coefficients (TEC) of the selected powders.

Samples TEC (10−6 K−1)

9.7 YSZ 11.2

9.7 LZ 7.44

9.7 SZ 11.3

9.7 EZ 11.3

30 LZ 5.25

30 SZ 10.5

30 EZ 10.7



in order to investigate their thermal diffusivity, specific heat capacity

and thermal dilatation. At room temperature, the RE powders exhibit

a lower thermal conductivity than our reference YSZ ceramic. 30 SZ

and 30 EZ have a lower TEC than YSZ. These powders with various

compositions are promising for future thermal barrier coatings by the

sol–gel process.
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