34 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Challenges and opportunities in the design and construction of a GIS-based emission inventory infrastructure for the Niger Delta region of Nigeria

    Get PDF
    © 2017, Springer-Verlag Berlin Heidelberg. Environmental monitoring in middle- and low-income countries is hampered by many factors which include enactment and enforcement of legislations; deficiencies in environmental data reporting and documentation; inconsistent, incomplete and unverifiable data; a lack of access to data; and technical expertise. This paper describes the processes undertaken and the major challenges encountered in the construction of the first Niger Delta Emission Inventory (NDEI) for criteria air pollutants and CO2 released from the anthropogenic activities in the region. This study focused on using publicly available government and research data. The NDEI has been designed to provide a Geographic Information System-based component of an air quality and carbon management framework. The NDEI infrastructure was designed and constructed at 1-, 10- and 20-km grid resolutions for point, line and area sources using industry standard processes and emission factors derived from activities similar to those in the Niger Delta. Due to inadequate, incomplete, potentially inaccurate and unavailable data, the infrastructure was populated with data based on a series of best possible assumptions for key emission sources. This produces outputs with variable levels of certainty, which also highlights the critical challenges in the estimation of emissions from a developing country. However, the infrastructure is functional and has the ability to produce spatially resolved emission estimates

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore