15 research outputs found

    An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes:Is There Relevance for Vaccine Development?

    Get PDF
    Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design.</p

    Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection

    Get PDF
    Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design

    Prevalence and clinical associations of myositis antibodies in a large cohort of interstitial lung diseases

    Get PDF
    Background Serologic testing for autoantibodies is recommended in interstitial lung diseases (ILDs), as connective tissue diseases (CTDs) are an important secondary cause. Myositis antibodies are associated with CTD-ILD, but clinical associations with other ILDs are unclear. In this study, associations of myositis antibodies in various ILDs were evaluated. Methods 1463 ILD patients and 116 healthy subjects were screened for myositis antibodies with a line-blot assay on serum available at time of diagnosis. Additionally, bronchoalveolar lavage fluid (BALf) was analysed. Results A total of 394 patients demonstrated reactivity to at least one antibody, including anti-Ro52 (36.0%), anti-Mi-2β (17.3%) and anti-Jo-1 (10.9%). Anti-Jo-1 (OR 6.4; p<0.100) and anti- Ro52 (OR 6.0; p<0.001) were associated with CTD-ILD. Interestingly, anti-Mi-2β was associated with idiopathic pulmonary fibrosis (IPF; OR 5.3; p = 0.001) and hypersensitivity pneumonitis (HP; OR 5.9; p<0.001). Furthermore, anti-Mi-2β was strongly associated with a histological usual interstitial pneumonia (UIP) pattern (OR 6.5; p < 0.001). Moreover, anti- Mi-2β reactivity was identified in BALf and correlated with serum anti-Mi-2β (r = 0.64; p = 0.002). No differences were found in survival rates between ILD patients with and without serum Mi-2β reactivity (hazard ratio 0.835; 95% CI 0.442-1.575; p = 0.577). Conclusion In conclusion, novel associations of antibody Mi-2β with fibrotic ILD were found. Furthermore, serum anti-Mi-2β was associated with a histological UIP pattern and presence of anti- Mi-2β in BALf. Possibly, anti-Mi-2β could be implemented as a future diagnostic biomarker for fibrotic ILD

    An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes: Is There Relevance for Vaccine Development?

    No full text
    Efficient and safe induction of CD8+ T cell responses is a desired characteristic of vaccines against intracellular pathogens. To achieve this, a new generation of safe vaccines is being developed accommodating single, dominant antigens of pathogens of interest. In particular, the selection of such antigens is challenging, since due to HLA polymorphism the ligand specificities and immunodominance hierarchies of pathogen-specific CD8+ T cell responses differ throughout the human population. A recently discovered mechanism of proteasome-mediated CD8+ T cell epitope generation, i.e., by proteasome-catalyzed peptide splicing (PCPS), expands the pool of peptides and antigens, presented by MHC class I HLA molecules. On the cell surface, one-third of the presented self-peptides are generated by PCPS, which coincides with one-fourth in terms of abundance. Spliced epitopes are targeted by CD8+ T cell responses during infection and, like non-spliced epitopes, can be identified within antigen sequences using a novel in silico strategy. The existence of spliced epitopes, by enlarging the pool of peptides available for presentation by different HLA variants, opens new opportunities for immunotherapies and vaccine design

    Introductie in de immunologie

    No full text

    CD8(+) T cells of Listeria monocytogenes-infected mice recognize both linear and spliced proteasome products

    No full text
    CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion. This article is protected by copyright. All rights reserved

    Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium

    No full text
    The skin is an attractive organ for immunization due to the presence of a large number of epidermal and dermal antigen-presenting cells. Hollow microneedles allow for precise and non-invasive intradermal delivery of vaccines. In this study, ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles with and without TLR3 agonist poly(I:C) were prepared and administered intradermally by hollow microneedles. The capacity of the PLGA nanoparticles to induce a cytotoxic T cell response, contributing to protection against intracellular pathogens, was examined. We show that a single injection of OVA-loaded PLGA nanoparticles, compared to soluble OVA, primed both adoptively transferred antigen-specific naïve transgenic CD8(+) and CD4(+) T cells with markedly high efficiency. Applying a triple immunization protocol, PLGA nanoparticles primed also endogenous OVA-specific CD8(+) T cells. Immune response, following immunization with in particular anionic PLGA nanoparticles co-encapsulated with OVA and poly(I:C), provided protection against a recombinant strain of the intracellular bacterium Listeria monocytogenes, secreting OVA. Taken together, we show that PLGA nanoparticle formulation is an excellent delivery system for protein antigen into the skin and that protective cellular immune responses can be induced using hollow microneedles for intradermal immunizations

    Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    No full text
    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin’s physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs

    Nanoporous Microneedle Arrays Effectively Induce Antibody Responses against Diphtheria and Tetanus Toxoid

    No full text
    The skin is immunologically very potent because of the high number of antigen-presenting cells in the dermis and epidermis, and is therefore considered to be very suitable for vaccination. However, the skin's physical barrier, the stratum corneum, prevents foreign substances, including vaccines, from entering the skin. Microneedles, which are needle-like structures with dimensions in the micrometer range, form a relatively new approach to circumvent the stratum corneum, allowing for minimally invasive and pain-free vaccination. In this study, we tested ceramic nanoporous microneedle arrays (npMNAs), representing a novel microneedle-based drug delivery technology, for their ability to deliver the subunit vaccines diphtheria toxoid (DT) and tetanus toxoid (TT) intradermally. First, the piercing ability of the ceramic (alumina) npMNAs, which contained over 100 microneedles per array, a length of 475 µm, and an average pore size of 80 nm, was evaluated in mouse skin. Then, the hydrodynamic diameters of DT and TT and the loading of DT, TT, and imiquimod into, and subsequent release from the npMNAs were assessed in vitro. It was shown that DT and TT were successfully loaded into the tips of the ceramic nanoporous microneedles, and by using near-infrared fluorescently labeled antigens, we found that DT and TT were released following piercing of the antigen-loaded npMNAs into ex vivo murine skin. Finally, the application of DT- and TT-loaded npMNAs onto mouse skin in vivo led to the induction of antigen-specific antibodies, with titers similar to those obtained upon subcutaneous immunization with a similar dose. In conclusion, we show for the first time, the potential of npMNAs for intradermal (ID) immunization with subunit vaccines, which opens possibilities for future ID vaccination designs

    Prevalence of Novel Myositis Autoantibodies in a Large Cohort of Patients with Interstitial Lung Disease

    No full text
    Connective tissue diseases (CTDs) are an important secondary cause of interstitial lung disease (ILD). If a CTD is suspected, clinicians are recommended to perform autoantibody testing, including for myositis autoantibodies. In this study, the prevalence and clinical associations of novel myositis autoantibodies in ILD are presented. A total of 1194 patients with ILD and 116 healthy subjects were tested for antibodies specific for Ks, Ha, Zo&alpha;, and cN1A with a line-blot assay on serum available at the time of diagnosis. Autoantibodies were demonstrated in 63 (5.3%) patients and one (0.9%) healthy control (p = 0.035). Autoantibodies were found more frequently in females (p = 0.042) and patients without a histological and/or radiological usual interstitial pneumonia (UIP; p = 0.010) and a trend towards CTD-ILDs (8.4%) was seen compared with other ILDs (4.9%; p = 0.090). The prevalence of antibodies specific for Ks, Ha, Zo&alpha;, and cN1A was, respectively, 1.3%, 2.0%, 1.4%, and 0.9% in ILD. Anti-Ha and Anti-Ks were observed in males with unclassifiable idiopathic interstitial pneumonia (unclassifiable IIP), hypersensitivity pneumonitis (HP), and various CTD-ILDs, whereas anti-cN1A was seen in females with antisynthetase syndrome (ASS), HP, and idiopathic pulmonary fibrosis (IPF). Anti-Zo&alpha; was associated with CTD-ILD (OR 2.5; 95%CI 1.11&ndash;5.61; p = 0.027). In conclusion, a relatively high prevalence of previously unknown myositis autoantibodies was found in a large cohort of various ILDs. Our results contribute to the awareness that circulating autoantibodies can be found in ILDs with or without established CTD. Whether these antibodies have to be added to the standard set of autoantibodies analysed in conventional myositis blot assays for diagnostic purposes in clinical ILD care requires further study
    corecore