10 research outputs found

    Grizzly Bear Population Augmentation In The Cabinet Mountains Of Northwest Montana Wayne Kasworm,* USDA Fish and Wildlife Service, Libby

    Get PDF
    The Cabinet Mountains grizzly bear (Ursus arctos horribilis) population was estimated at 15 or fewer individuals in 1988 and believed to be declining toward extinction. In response to this decline, a test of population augmentation techniques was conducted during 1990- 1994 when four subadult female grizzly bears were transplanted to the area. Two criteria were identified as measures of success: bears must remain in the target area for one year, and bears should ultimately breed with native male grizzly bears and reproduce. Reproductive success of any of the remaining individuals could not be established until 2006 when genetic analysis of hair snag samples collected from 2002-2005 indicated that one of the transplanted bears remained in the Cabinet Mountains and had reproduced. The detected bear was transplanted in 1993 as a 2-year-old and was identified by a hair snag within 5 mi of the original release site. Genetic analysis indicated she had produced at least six offspring, and two of her female offspring had also reproduced. This reproduction indicates that the original test of augmentation was successful with at least one of the transplanted individuals. Success of the grizzly bear augmentation test prompted continuation of this effort. The Northern Continental Divide Ecosystem area of north central Montana has been the source of seven additional bears transplanted to the Cabinet Mountains during 2005-2010. All were female bears except one: a young male was moved in 2010. Two female bears were killed and two female bears left the area. Fates and movements of these bears are discussed

    Conservation of Threatened Canada-USA Trans-border Grizzly Bears Linked to Comprehensive Conflict Reduction

    Get PDF
    Mortality resulting from human–wildlife conflicts affects wildlife populations globally. Since 2004, we have been researching conservation issues and implementing a comprehensive program to reduce human–bear conflicts (Ursus spp.; HBC) for 3 small, fragmented, and threatened grizzly bear (U. arctos) populations in the trans-border region of southwest Canada and northwest USA. We explored the temporal and spatial patterns of conflict mortality and found that HBC contributed significantly to the threatened status of these populations by causing decline, fragmentation, and decreased habitat effectiveness. Our program to reduce HBCs primarily included strategic private lands purchased to reduce human density in wildlife corridors, the reduction of bear attractants where human settlement and agriculture exists, and the nonlethal management of conflict bears. Attractant management strategies encompassed public education, cost-share electric fencing, bear-resistant garbage containers, and deadstock containment. We taught bear safety courses and bear spray training to increase tolerance and give people tools to avoid negative encounters with bears. We radio-collared and used nonlethal management on potential conflict bears and have a ~75% success rate in that the bear was alive and out of conflict situations over the life of the radio-collar. We identified important backcountry grizzly bear foraging habitat for motorized access control to reduce conflict and mortality and provide habitat security to reproductive females. Ongoing monitoring has demonstrated that our comprehensive HBC program has resulted in a significant reduction in human-caused mortality, increased inter-population connectivity, and improved habitat effectiveness. Several challenges remain, however, including an increase in the numbers of young grizzly bears living adjacent to agricultural areas. Herein we discuss strategies for how to integrate conservation vision into future HBC reduction programs

    A Distributed Network for Intensive Longitudinal Monitoring in Metastatic Triple-Negative Breast Cancer

    No full text
    Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient’s evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs

    A Distributed Network for Intensive Longitudinal Monitoring in Metastatic Triple-Negative Breast Cancer.

    No full text
    Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs

    Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope

    No full text
    94 pages, 22 figures, 1 tableAstrophysical and cosmological observations currently provide the only robust, empirical measurements of dark matter. Future observations with Large Synoptic Survey Telescope (LSST) will provide necessary guidance for the experimental dark matter program. This white paper represents a community effort to summarize the science case for studying the fundamental physics of dark matter with LSST. We discuss how LSST will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational couplings to the Standard Model, and compact object abundances. Additionally, we discuss the ways that LSST will complement other experiments to strengthen our understanding of the fundamental characteristics of dark matter. More information on the LSST dark matter effort can be found at https://lsstdarkmatter.github.io/

    Dark Matter Science in the Era of LSST

    Get PDF
    Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter parameter space. This white paper summarizes astrophysical observations that can constrain the fundamental physics of dark matter in the era of LSST. We describe how astrophysical observations will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational interactions with the Standard Model, and compact object abundances. Additionally, we highlight theoretical work and experimental/observational facilities that will complement LSST to strengthen our understanding of the fundamental characteristics of dark matter

    How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers

    No full text
    corecore