24 research outputs found

    All Known Human Rhinovirus Species Are Present in Sputum Specimens of Military Recruits During Respiratory Infection

    Get PDF
    Human rhinoviruses (HRV) are known to cause common cold as well as more complicated respiratory infections. HRV species -A, -B and -C have all been associated with lower respiratory infections and exacerbations of asthma. However, the type distribution of strains connected to different kinds of lower respiratory conditions is not clearly known. We have analysed the presence of HRV in sputum specimens derived from military recruits with and without pre-diagnosed asthma at times of acute respiratory infection (CIAS Study, 2004–2005). The analysis was performed with HRV and HEV real-time RT-PCR assays. Subsequently we studied type distribution of HRV strains by genetic typing in the VP4/VP2 genomic region. In total 146 (38.8%) specimens were HRV-positive and 36 (9.3%) HEV-positive. No difference was found in HRV detection between the asthmatic vs. non-asthmatic patients. Most of the genetically typed strains, 18 (62.1%), belonged to HRV-A, while HRV-B strains constituted five (17.2%) of the HRV-positive strains. HRV-C strain was typed four times from the HRV-positive cases and a HEV-D strain twice. We further typed six HEV positive strains in the partial VP1 region. Three of these belonged to HRV-A and three to HEV-D. HRV-A strains were discovered throughout the study period, while HRV-C strains originated from winter and spring specimens. Interestingly, four out of five typed HRV-B strains originated from the summer season specimens

    Detection of pneumococcus by PCR

    No full text
    Abstract New rapid methods for sensitive and specific detection of pneumococci are not only needed to improve the diagnosis of pneumococcal disease but are also essential for vaccine and carriage studies. The purpose of this study was to develop sensitive PCR methods for the detection and quantification of S. pneumoniae and to study the applicability of these methods to detecting pneumococci in clinical samples. A previously described PCR method was first developed further by introducing a Europium-labelled hybridisation probe for the detection of amplification products. The hybridisation method was easy to use and improved the specificity of the PCR assay. The developed PCR assay was established as a sensitive method for detecting pneumococcal DNA when the presence of pneumococcal DNA in over 2500 middle ear fluid (MEF) samples of children with acute otitis media (AOM) was studied by using the method. Pneumococcal findings increased by 76% when using PCR detection in addition to culture, compared to using culture alone. However, the PCR-positive, culture-negative AOM events represented a less severe type of disease compared to the culture-positive events. A positive PCR finding seems to indicate the presence of viable, although often non-culturable pneumococci within the middle ear cleft. To be able to rapidly detect and quantify the initial numbers of pneumococcal genome copies in clinical samples, a real-time PCR method for the detection and quantification of pneumococcal DNA was developed. In real-time PCR, amplification and detection of amplification products occur simultaneously, which makes it possible to monitor the phase of the reaction at a particular stage or continuously. The method developed here was applied to the analysis of MEF samples and to investigating the nasopharyngeal carriage of pneumococcus. The sensitivities of bacterial culture and real-time PCR in detecting pneumococci were also compared. The real-time PCR assay was found to be rapid and sensitive and to provide information about the differences between the numbers of bacteria in samples. However, the quantitative results were shown to be dependent on the DNA extraction method applied. The real-time PCR method developed appears to be a good aid in research where an accurate and sensitive pneumococcal diagnosis is needed

    Using Multilocus Sequence Data To Define the Pneumococcus

    No full text
    We investigated the genetic relationships between serotypeable pneumococci and nonserotypeable presumptive pneumococci using multilocus sequence typing (MLST) and partial sequencing of the pneumolysin gene (ply). Among 121 nonserotypeable presumptive pneumococci from Finland, we identified isolates of three classes: those with sequence types (STs) identical to those of serotypeable pneumococci, suggesting authentic pneumococci in which capsular expression had been downregulated or lost; isolates that clustered among serotypeable pneumococci on a tree based on the concatenated sequences of the MLST loci but which had STs that differed from those of serotypeable pneumococci in the MLST database; and a more diverse collection of isolates that did not cluster with serotypeable pneumococci. The latter isolates typically had sequences at all seven MLST loci that were 5 to 10% divergent from those of authentic pneumococci and also had distinct and divergent ply alleles. These isolates are proposed to be distinct from pneumococci but cannot be resolved from them by optochin susceptibility, bile solubility, or the presence of the ply gene. Complete resolution of pneumococci from the related but distinct population is problematic, as recombination between them was evident, and a few isolates of each population possessed alleles at one or occasionally more MLST loci from the other population. However, a tree based on the concatenated sequences of the MLST loci in most cases unambiguously distinguished whether a nonserotypeable isolate was or was not a pneumococcus, and the sequence of the ply gene fragment was found to be useful to resolve difficult cases

    A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate

    No full text
    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was −9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m3. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00–1.15)) and maximal (OR 1.08 (1.01–1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03–1.40)) and maximal decrease (OR 1.13 (CI 0.96–1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m3 decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00–1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects
    corecore