62 research outputs found

    The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model

    Get PDF
    BACKGROUND: The secretory basic amino acid-specific proprotein convertases (PCs) have often been associated with cancer/metastasis. By controlling the cleavage of cancer-associated proteins, PCs play key roles in multiple steps of cancer development. Most analyses of the implication of PCs in cancer/metastasis relied on the use of in vitro overexpression systems or inhibitors that can affect more than one PC. Aside from the role of furin in salivary gland tumorigenesis, no other in vivo genetic model of PC-knockout was reported in relation to cancer development. RESULTS: Since PC5/6 is highly expressed in the small intestine, the present study examined its in vivo role in intestinal tumorigenesis. Analysis of human intestinal tumors at various stages showed a systematic down-regulation of PC5/6 expression. Since gene inactivation of PC5/6 leads to lethality at birth, we generated mice lacking PC5/6 in enterocytes and analyzed the impact of the presence or absence of this PC in the mouse ApcMin/+ model that develops numerous adenocarcinomas along the intestinal tract. This resulted in viable mice with almost no expression of PC5/6 in small intestine, but with no overt phenotype. The data showed that by themselves ApcMin/+ tumors express lower levels of PC5/6 mRNA, and that the lack of PC5/6 in enterocytes results in a significantly higher tumor number in the duodenum, with a similar trend in other intestinal segments. Finally, the absence of PC5/6 is also associated with a premature mortality of ApcMin/+ mice. CONCLUSION: Overall, these data suggest that intestinal PC5/6 is protective towards tumorigenesis, especially in mouse duodenum, and possibly in human colon.This work was supported by Canadian Institutes of Health Research grant # 44363, a Canada Chair # 201652, and a Strauss foundation grant

    Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9.

    Get PDF
    Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.This work was supported by HL081162, HL077796 and HL095668 from the National Heart, Lung and Blood Institute and by the Canadian Institutes of Health Research grants 82946 and 102741. The Proteomics Core Facility is supported by the Vermont Genetics Network through NIH grant 8P20GM103449 from the INBRE program of the National Institute of General Medical Sciences (NIGMS) and the National Center for Research Resources (NCRR). BRP thanks the NIH (CA83831) for financial support. AP was supported by the Canadian Institutes of Health Research grants 82946 and 102741

    Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice

    Get PDF
    PC7 belongs to the proprotein convertase family, whose members are implicated in the cleavage of secretory precursors. The in vivo function of PC7 is unknown. Herein, we find that the precursor proBDNF is processed into mature BDNF in COS-1 cells coexpressing proBDNF with either PC7 or Furin. Conversely, the processing of proBDNF into BDNF is markedly reduced in the absence of either Furin or PC7 in mouse primary hepatocytes. In vivo we observe that BDNF and PC7 mRNAs are colocalized in mouse hippocampus and amygdala and that mature BDNF protein levels are reduced in these brain areas in PC7 KO mice but not in the hippocampus of PC1/3 KO mice. Various behavioral tests reveal that in PC7 KO mice spatial memory is intact and plasticity of responding is mildly abnormal. Episodic and emotional memories are severely impaired, but both are rescued with the tyrosine receptor kinase B agonist 7,8-dihydroxyflavone. Altogether, these results support an in vivo role for PC7 in the regulation of certain types of cognitive performance, in part via proBDNF processing. Because polymorphic variants of human PC7 are being characterized, it will be important in future studies to determine their effects on additional physiological and behavioral processes

    The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: <it>in vivo </it>mouse model

    No full text
    Abstract Background The secretory basic amino acid-specific proprotein convertases (PCs) have often been associated with cancer/metastasis. By controlling the cleavage of cancer-associated proteins, PCs play key roles in multiple steps of cancer development. Most analyses of the implication of PCs in cancer/metastasis relied on the use of in vitro overexpression systems or inhibitors that can affect more than one PC. Aside from the role of furin in salivary gland tumorigenesis, no other in vivo genetic model of PC-knockout was reported in relation to cancer development. Results Since PC5/6 is highly expressed in the small intestine, the present study examined its in vivo role in intestinal tumorigenesis. Analysis of human intestinal tumors at various stages showed a systematic down-regulation of PC5/6 expression. Since gene inactivation of PC5/6 leads to lethality at birth, we generated mice lacking PC5/6 in enterocytes and analyzed the impact of the presence or absence of this PC in the mouse ApcMin/+ model that develops numerous adenocarcinomas along the intestinal tract. This resulted in viable mice with almost no expression of PC5/6 in small intestine, but with no overt phenotype. The data showed that by themselves ApcMin/+ tumors express lower levels of PC5/6 mRNA, and that the lack of PC5/6 in enterocytes results in a significantly higher tumor number in the duodenum, with a similar trend in other intestinal segments. Finally, the absence of PC5/6 is also associated with a premature mortality of ApcMin/+ mice. Conclusion Overall, these data suggest that intestinal PC5/6 is protective towards tumorigenesis, especially in mouse duodenum, and possibly in human colon.</p

    The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    No full text
    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase
    • …
    corecore