30 research outputs found

    The Plasmodium LAP complex affects crystalloid biogenesis and oocyst cell division.

    Get PDF
    Malaria parasite oocysts located on the mosquito midgut generate sporozoites by a process called sporogony. Plasmodium berghei parasites express six LCCL lectin domain adhesive-like proteins (LAPs), which operate as a complex and share a localisation in the crystalloid - an organelle found in the ookinete and young oocyst. Depletion of LAPs prevents crystalloid formation, increases oocyst growth, and blocks sporogony. Here, we describe a LAP4 mutant that has abnormal crystalloid biogenesis and produces oocysts that display reduced growth and premature sporogony. These findings provide evidence for a role of the LAP complex in regulating oocyst cell division via the crystalloid

    Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly.

    Get PDF
    Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite's development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control

    Palmitoylation of Plasmodium alveolins promotes cytoskeletal function.

    Get PDF
    S-palmitoylation is a post-translational lipid modification that is widespread among Plasmodium proteins and essential for parasite development. Little is known about the contribution of palmitoylation to the function of individual parasite molecules and structures. Alveolins are major components of the subpellicular network (SPN), a cortical cytoskeleton primarily involved in providing mechanical strength to the cell. We show here that the alveolin IMC1c is palmitoylated on a conserved cysteine motif, and that non-palmitoylated IMC1c displays normal expression, stability and trafficking. However, mutant parasites exhibit reduced osmotic stress resistance and tensile strength. These findings support the hypothesis that alveolin palmitoylation enhances cytoskeletal function by strengthening the connection between the SPN and the adjoining inner membrane complex via lipid anchoring

    The Plasmodium alveolin IMC1a is stabilised by its terminal cysteine motifs and facilitates sporozoite morphogenesis and infectivity in a dose-dependent manner.

    Get PDF
    Apicomplexan parasites possess a unique cortical cytoskeleton structure composed of intermediate filaments. Its building blocks are provided by a conserved family of proteins named alveolins. The core alveolin structure is made up of tandem repeat sequences, thought to be responsible for the filamentous properties of these proteins. A subset of alveolins also possess conserved motifs composed of three closely spaced cysteine residues situated near the ends of the polypeptides. The roles of these cysteine motifs and their contribution to alveolin function remains poorly understood. The sporozoite-expressed IMC1a is unique within the Plasmodium alveolin family in having conserved cysteine motifs at both termini. Using transgenic Plasmodium berghei parasites, we show in this structure-function analysis that mutagenesis of the amino- or carboxy-terminal cysteine motif causes marked reductions in IMC1a protein levels in the parasite, which are accompanied by partial losses of sporozoite shape and infectivity. Our findings give new insight into alveolin function, identifying a dose-dependent effect of alveolin depletion on sporozoite size and infectivity, and vital roles of the terminal cysteine motifs in maintaining alveolin stability in the parasite

    Plasmodium berghei oocysts possess fatty acid synthesis and scavenging routes.

    Get PDF
    Malaria parasites carry out fatty acid synthesis (FAS) in their apicoplast organelle via a bacterially related (type II) enzymatic pathway. In the vertebrate host, exoerythrocytic Plasmodium stages rely on FAS, whereas intraerythrocytic stages depend on scavenging FA from their environment. In the mosquito, P. falciparum oocysts express and rely on FAS enzymes for sporozoite formation, but P. yoelii oocysts do not express, nor depend on, FAS enzymes and thus rely on FA scavenging to support sporogony. In P. berghei, FAS enzymes are similarly expendable for sporogony, indicating it conforms to the P. yoelii scenario. We show here that P. berghei, unexpectedly, expresses FAS enzymes throughout oocyst development. These findings indicate that P. berghei can employ FAS alongside FA scavenging to maximise sporogony and transmission, and is more similar to P. falciparum than previously assumed with respect to FA acquisition by the oocyst. The ability of oocysts to switch between FAS and scavenging could be an important factor in the non-competitive relationship of resource exploitation between Plasmodium parasites and their mosquito vectors, which shapes parasite virulence both in the insect and vertebrate

    NAD(P) transhydrogenase isoform distribution provides insight into apicomplexan evolution

    Get PDF
    Membrane-located NAD(P) transhydrogenase (NTH) catalyses reversible hydride ion transfer between NAD(H) and NADP(H), simultaneously translocating a proton across the membrane. The enzyme is structurally conserved across prokaryotes and eukaryotes. In heterotrophic bacteria NTH proteins reside in the cytoplasmic membrane, whereas in animals they localise in the mitochondrial inner membrane. Eukaryotic NTH proteins exists in two distinct configurations (isoforms) and have non-mitochondrial functions in unicellular eukaryotes like Plasmodium, the causative agent of malaria. In this study, we carried out a systematic analysis of nth genes across eukaryotic life to determine its prevalence and distribution of isoforms. The results reveal that NTH is found across all major lineages, but that some organisms, notably plants, lack nth genes altogether. Isoform distribution and phylogenetic analysis reveals different nth gene loss scenarios in apicomplexan lineages, which sheds new light on the evolution of the Piroplasmida and Eimeriidae

    Plasmodium berghei LAPs form an extended protein complex that facilitates crystalloid targeting and biogenesis.

    Get PDF
    Passage of malaria parasites through mosquitoes involves multiple developmental transitions, from gametocytes that are ingested with the blood meal, through to sporozoites that are transmitted by insect bite to the host. During the transformation from gametocyte to oocyst, the parasite forms a unique transient organelle named the crystalloid, which is involved in sporozoite formation. In Plasmodium berghei, a complex of six LCCL domain-containing proteins (LAPs) reside in the crystalloid and are required for its biogenesis. However, little else is known about the molecular mechanisms that underlie the crystalloid's role in sporogony. In this study, we have used transgenic parasites stably expressing LAP3 fused to GFP, combined with GFP affinity pulldown and high accuracy mass spectrometry, to identify an extended LAP interactome of some fifty proteins. We show that many of these are targeted to the crystalloid, including members of two protein families with CPW-WPC and pleckstrin homology-like domains, respectively. Our findings indicate that the LAPs are part of an intricate protein complex, the formation of which facilitates both crystalloid targeting and biogenesis. SIGNIFICANCE: Reducing malaria parasite transmission by mosquitoes is a key component of malaria eradication and control strategies. This study sheds important new light on the molecular composition of the crystalloid, an enigmatic parasite organelle that is essential for sporozoite formation and transmission from the insect to the vertebrate host. Our findings provide new mechanistic insight into how proteins are delivered to the crystalloid, and indicate that the molecular mechanisms that underlie crystalloid function are complex, involving several protein families unique to Plasmodium and closely related organisms. The new crystalloid proteins identified will form a useful starting point for studies aimed at unravelling how the crystalloid organelle facilitates sporogony and transmission

    Dysregulated gene expression in oocysts of Plasmodium berghei LAP mutants.

    Get PDF
    Malaria parasite oocysts generate sporozoites by a process termed sporogony. Essential for successful sporogony of Plasmodium berghei in Anopheles stephensi mosquitoes is a complex of six LCCL lectin domain adhesive-like proteins (LAPs). LAP null mutant oocysts undergo growth and mitosis but fail to form sporozoites. At a cytological level, LAP null mutant oocyst development is indistinguishable from its wildtype counterparts for the first week, supporting the hypothesis that LAP null mutant oocysts develop normally before cytokinesis. We show here that LAP1 null mutant oocysts display highly reduced expression of sporozoite proteins and their transcription factors. Our findings indicate that events leading up to the cytokinesis defect in LAP null mutants occur early in oocyst development

    LCCL protein complex formation in Plasmodium is critically dependent on LAP1.

    Get PDF
    Successful sporogony of Plasmodium berghei in vector mosquitoes requires expression of a family of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs). The LAPs share a subcellular localization in the crystalloid, a unique parasite organelle that forms during ookinete development. Here, LAP interactions in P. berghei were studied using a series of parasite lines stably expressing reporter-tagged LAPs combined with affinity purification and high accuracy label free quantitative mass spectrometry. Our results show that abundant complexes containing LAP1, LAP2 and LAP3 are formed in gametocytes through high avidity interactions. Following fertilization, LAP4, LAP5 and LAP6 are recruited to this complex, a process that is facilitated by LAP1 chiefly through its scavenger receptor cysteine-rich modules. These collective findings provide new insight into the temporal and molecular dynamics of protein complex formation that lead up to, and are required for, crystalloid biogenesis and downstream sporozoite transmission of malaria parasites

    Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains.

    Get PDF
    The invasive and motile life stages of malaria parasites (merozoite, ookinete and sporozoite) possess a distinctive cortical structure termed the pellicle. The pellicle is characterised by a double-layered 'inner membrane complex' (IMC) located underneath the plasma membrane, which is supported by a cytoskeletal structure termed the subpellicular network (SPN). The SPN consists of intermediate filaments, whose major constituents include a family of proteins called alveolins. Here, we re-appraise the alveolins in the genus Plasmodium with respect to their repertoire, structure and interrelatedness. Amongst 13 family members identified, we distinguish two domain types that, albeit distinct at the primary structure level, are structurally related and contain tandem repeats with a consensus 12-amino acid periodicity. Analysis in Plasmodium berghei of the most divergent alveolin, PbIMC1d, reveals a zoite-specific expression in ookinetes and a subcellular localisation in the pellicle, consistent with its predicted role as a SPN component. Knockout of PbIMC1d gives rise to a wild-type phenotype with respect to ookinete morphogenesis, tensile strength, gliding motility and infectivity, presenting the first example of apparent functional redundancy amongst alveolin family members
    corecore