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Highlights 

 The six LAPs in Plasmodium berghei form a protein complex in ookinetes 
 

 Complex formation begins in macrogametocytes with LAP1, LAP2 and LAP3 interactions  
 

 LAP1 plays a key role in recruitment of LAP4, LAP5 and LAP6 to the complex 
 

 The LAP complex displays different strength interactions between components 
 

Successful sporogony of Plasmodium berghei in vector mosquitoes requires expression of a family of six 

modular proteins named LCCL lectin domain adhesive-like proteins (LAPs). The LAPs share a 

subcellular localization in the crystalloid, a unique parasite organelle that forms during ookinete 

development. Here, LAP interactions in P. berghei were studied using a series of parasite lines stably 

expressing reporter-tagged LAPs combined with affinity purification and high accuracy label free 

quantitative mass spectrometry. Our results show that abundant complexes containing LAP1, LAP2 

and LAP3 are formed in gametocytes through high avidity interactions. Following fertilization, LAP4, 

LAP5 and LAP6 are recruited to this complex, a process that is facilitated by LAP1 chiefly through its 

scavenger receptor cysteine-rich modules. These collective findings provide new insight into the 

temporal and molecular dynamics of protein complex formation that lead up to, and are required for, 

crystalloid biogenesis and downstream sporozoite transmission of malaria parasites. 
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LCCL proteins form a family of unique modular proteins restricted to apicomplexan parasites [1]. The proteins 

obtained their name from possessing one or more copies of the ‘LCCL' domain, a conserved protein module 

that was first identified in the founding proteins Limulus clotting factor C; cochlear protein Coch-5b2; and 

lung gestation protein Lgl1 [2]. Six LCCL protein family members have been identified in Plasmodium, which 

in P. berghei are mostly referred to as LCCL lectin adhesive-like protein (LAP) 1 to 6 [3] (Fig. 1). They have 

a complex and unique architecture typified by possessing multiple domains implicated in protein, lipid and 

carbohydrate binding [1, 4] (Fig. 1). LAP5 does not possess a predicted LCCL module and is included in the 

family by virtue of its otherwise similar structure to LAP3 (Fig. 1). Disruption of lap genes in P. berghei, 

either individually or in pairs, gives rise to very similar loss-of-function phenotypes characterized by a failure 

of the oocyst to produce infective sporozoites [5-10].  

 A significant advance in our understanding of the LAPs came with the discovery that they are targeted 

to the crystalloids and are required for crystalloid formation [5, 10, 11]. First described in 1962 [12], 

crystalloids are transient subcellular organelles that are implicated in malaria transmission by virtue of their 

exclusive presence in ookinetes and young oocysts (reviewed in [13]). The organelles are conserved in human, 

monkey, rodent and bird malaria species, and they appear in electron microscopy as clusters of small vesicles 

[14]. Whilst P. berghei ookinetes contain on average two crystalloids, only a single large crystalloid is found 

in the oocyst indicating that crystalloid biogenesis completes after ookinete-to-oocyst transition [10]. The 

inability to form crystalloids appears to be a shared feature of LAP knockout parasites, as is their inability to 

form sporozoites, thus providing a functional link between crystalloid formation and successful sporogonic 

development. A mutant parasite line expressing LAP3 lacking its LCCL domain and turning it into a LAP5-

like protein was shown to have delayed crystalloid formation [10], further pointing to the involvement of the 

LAPs in crystalloid genesis.  

 The similar loss-of-function phenotypes of the LAPs in P. berghei suggest that they operate as a 

protein complex. Indeed, LAP orthologues in the human malaria parasite P. falciparum were shown to co-

immunoprecipitate with specific antibodies, supporting formation of a LAP complex [15]. Furthermore, in 

vitro binding assays with recombinant, bacterially expressed proteins corresponding to various LAP portions 

identified putative interactions between LAP1 and all other LAPs except LAP5; between LAP2 and LAP3; 

and between LAP2 and LAP5 in P. falciparum [15]. In this paper we report a complementary in vivo approach 

to investigate LAP interactions in the rodent malaria parasite P. berghei, using a series of existing and newly 
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generated genetically modified parasite lines stably expressing LAPs fused to green fluorescent protein (GFP), 

combined with GFP affinity purification and label-free quantitative mass spectrometry (LFQ MS). 

 We began by testing whether we could successfully pull down GFP-tagged LAPs from purified 

parasites with magnetic beads conjugated to anti-GFP antibodies (see supplemental Materials and Methods 

section). Gametocyte pull down samples of parasite line LAP3/GFP that expresses LAP3 fused to a carboxy-

terminal GFP [11] were subjected to SDS-PAGE alongside corresponding samples from wild-type parasites, 

followed by protein staining (Fig. 2A). This visualized several bands specific to the LAP3/GFP sample, one 

of which corresponded to the target protein (LAP3::GFP) as demonstrated by western blot using anti-GFP 

antibodies (Fig. 2B). These results indicated that the anti-GFP antibody-bound magnetic microbeads are 

successful in isolating the GFP-tagged target protein as well as proteins bound to it. Indeed, subsequent MS-

based proteomic analysis (see supplemental Materials and Methods section) revealed that the GFP pull-down 

samples harvested from the purified LAP3/GFP gametocytes reproducibly contained LAP1, LAP2 and LAP3 

as the most abundant proteins (Table 1 and supplemental Table S1). This is consistent with the reported protein 

expression of LAP1, LAP2 and LAP3 in P. berghei macrogametocytes [5, 11]. Pull down from purified 

LAP3/GFP ookinetes, which express the full LAP repertoire [16], gave the same result, as did equivalent pull 

down samples from parasite line LAP1/GFP (originally called PbSR/EGFP [5]) (Tables 1, S1). As expected, 

LAPs were not pulled down from LAP3-KO or LAP1-KO parasites by the same method (Tables 1, S1), 

providing further evidence that the pull downs are specific. These collective results indicate that LAP1, LAP2 

and LAP3 have high avidity interactions with each other, but not with the other LAPs.  

 To further investigate LAP family member interactions, we carried out similar pull down experiments 

with parasite lines LAP4/GFP, LAP5/GFP and LAP6/GFP [16]. Transcripts of lap4, lap5 and lap6 are 

translationally repressed in gametocytes and not expressed as protein until after fertilization [16], therefore 

ookinete samples were used. Pull-down samples from purified LAP4/GFP or LAP5/GFP ookinetes contained 

high levels of LAP4 and LAP5, but little or no LAP1, LAP2, LAP3 or LAP6 (Tables 1, S1), showing that 

LAP4 and LAP5 interact with high avidity with each other, but not with the other LAPs. In pull-down samples 

of LAP6/GFP ookinetes, only LAP6 was detected in discernible amounts (Tables 1, S1), indicating that LAP6 

does not bind to its family members with high avidity. 

 Based on domain topologies, LAP4 is considered a structural paralogue of LAP2, and LAP5 is a 

structural paralogue of LAP3 (Fig. S1). The interaction observed between LAP4 and LAP5 could therefore 
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resemble that between LAP2 and LAP3. To test whether LAP2 could interact directly with LAP3, as shown 

for LAP4 and LAP5 (Tables 1, S1), we used a parasite line which expresses GFP-tagged LAP3 in a LAP1 

knockout background [17]. GFP pull down samples from these parasites contained no LAP1, as expected, but 

still contained abundant LAP2 and LAP3 (Tables 1, S1). This shows that LAP2 and LAP3 interact with high 

avidity in the absence of LAP1. 

 The failure to pull down LAP4, LAP5 and LAP6 with GFP-tagged LAP1 or LAP3, and vice versa 

(Tables 1, S1), could reflect weak interactions that were lost during the cell lysis step before pull down. To 

test this hypothesis, ookinetes purified from parasite line LAP3/GFP were crosslinked in vivo by formaldehyde 

treatment before cell lysis (see supplemental Materials and Methods section). Formaldehyde is one of the 

shortest available cross-linkers is (2.3–2.7 Å) and low concentrations (0.4–2%) and short reaction times 

(minutes instead of hours) allow its utilization as a crosslinker to analyze protein-protein interactions [18]. 

Indeed, crosslinking resulted in the pull down of all six LAPs (Tables 1, S1), indicating that LAP4, LAP5 and 

LAP6 are part of the LAP complex albeit through weaker interactions, and join the LAP1/2/3 subcomplex 

after fertilization. 

 Given the structural and interaction similarities between the LAP2/3 and LAP4/5 pairs, we next 

hypothesized that the recruitment of the other LAPs to the complex could be mediated by LAP1. This was 

tested using ookinetes from the mutant parasite line that expresses LAP3::GFP in a LAP1 knockout 

background [17] combined with in vivo crosslinking. Using this approach, LAP4 and LAP5 were pulled down 

with markedly reduced efficacy relative to LAP2 and LAP3, while LAP6 failed to co-purify altogether (Tables 

1, S1). These results indicate that LAP1 plays a key role in recruiting LAP4, LAP5 and LAP6 to the LAP 

complex.  

 To further dissect the role of LAP1 in these interactions, we carried out pull downs from ookinete 

lysates (after crosslinking) with parasite line LAP1SRCR/GFP expressing LAP1::GFP without its two SRCR 

domains [5]. Removal of the SRCR domains of LAP1 results in a LAP1 knockout phenotype characterized by 

a lack of crystalloid biogenesis and sporozoite formation [5].  Pull down with this parasite gave a similar 

outcome as using parasites lacking LAP1 altogether: low amounts of LAP4 and LAP5 were pulled down 

relative to LAP1, LAP2 and LAP3, while LAP6 failed to co-purify (Tables 1, S1), indicating that the SRCR 

domains play a central role in LAP complex formation. The ability to efficiently pull down LAP2 and LAP3 

in this experiment shows that the mutant LAP1 protein without the SRCR modules retains interaction with 
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LAP2 and LAP3. LAP1 is the only protein in the genus Plasmodium that contains SRCR domains and, 

importantly, these domains are unique among all SRCR domains in possessing two additional cysteine residues 

in one of hypervariable loop-out regions between sheets 4 and 5 [6]. In CD6, hypervariable regions in the 

SRCR domain are involved in substrate interaction and specificity [19]. The unique cysteines contained in this 

hypervariable region could thus be involved in LAP1 interaction and function, for example by forming new 

intra-domain disulfides, or by interacting with other domains within LAP1 or other family members. 

 As an internal control for the LAP1SRCR/GFP parasite we also generated a new parasite line named 

LAP1PTX/GFP, which expresses LAP1::GFP without its pentaxin (PTX) domain (see supplemental 

Materials and Methods section and supplemental Fig. S1). Like LAP1SRCR/GFP parasites, 

LAP1PTX/GFP parasites failed to form crystalloids and generated oocysts, the large majority of which failed 

to produce sporozoites (Fig. S1). However, compared to LAP1SRCR/GFP, pull down from LAP1PTX/GFP 

ookinetes yielded considerably higher levels of LAP4, LAP5 and LAP6, albeit the amounts were reduced 

compared to ookinetes expressing the full-length LAP1 (Tables 1, S1). These observations indicate that the 

SRCR and PTX modules of LAP1 contribute differentially to the formation of the complete LAP complex. 

Moreover, the very similar phenotypes of these LAP1 mutant parasites indicate that the relative amounts of 

individual LAPs within the complex is equally important for its function.  

Ablation or mutation of LAP1 did not appear to have a significant effect on the relative levels of LAP2 

and LAP3, as opposed to LAP4, LAP5 and LAP6 (Tables 1 and S1). The reduced levels of LAP4, LAP5 and 

LAP6 in these pull-down samples could reflect a reduced ability to bind to the gametocyte-specific LAP 

subcomplex. It is also possible that the stability of these proteins was adversely affected, possibly a direct 

consequence of sub-optimal binding to the other LAPs resulting in conformational changes and misfolding. In 

this context it is important to note that in P. falciparum ablation of certain LAPs can adversely affect the level 

of other LAPs, a phenomenon that was called co-dependent expression [15]. Whatever the precise underlying 

mechanism, LAP1 clearly has a key role in formation of a complete and fully functional LAP complex. 

  Pull down samples from ookinetes of parasite line LAP3LCCL/GFP, which expresses a version of 

LAP3::GFP that lacks its LCCL domain (previously described as PbLAP3/LCCL-KO [10]) contained high 

levels of LAP1, LAP2 and LAP3 similar to full-length LAP3/GFP pull-downs (Tables 1, S1). Likewise, in 

vivo crosslinked ookinete samples of parasite line LAP3LCCL/GFP gave rise to co-purification of all LAP 
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family members similar to full-length LAP3/GFP pull-downs (Tables 1, S1). These combined data show that 

the LCCL domain of LAP3 is not required for the formation of the LAP1/2/3 sub-complex or indeed the 

complete LAP complex, indicating that this LCCL domain is not significantly involved in the LAP 

interactions. This is consistent with the observation that mature ookinetes of this parasite can form crystalloids 

and give rise to normal sporozoite development and transmission [10]. However, crystalloid biogenesis in 

LAP3LCCL/GFP ookinetes is retarded [10], which suggests that the LCCL domain of LAP3 does 

nonetheless have a subtle role within the LAP complex enhancing downstream crystalloid genesis.   

 Whilst recognizing the limitations of in vitro interaction studies with bacterially expressed proteins 

compared to parasite-expressed equivalents (e.g. with regards to protein conformation), the LAP interactions 

reported for P. falciparum [15] are broadly consistent with this study and point to a conservation of LAP 

interactions between the two Plasmodium species. This concept is strongly supported by the highly conserved 

and unique architectures of the LAP family members. It is important to note that in P. falciparum all six LAP 

homologues are expressed as protein in gametocytes [20], in contrast to P. berghei where transcripts of lap4, 

lap5 and lap6 are translationally repressed in gametocytes resulting in their protein expression post-

fertilization [16]. The different strength interactions between different LAP combinations as identified in this 

study could be a mechanism to ensure that complex formation of the LAP homologues in P. falciparum follows 

a similar order of events to that in P. berghei despite all LAPs being present at the same time. Furthermore, 

gametocyte development in P. falciparum takes much longer than in P. berghei, increasing the likelihood that 

staggered LAP expression and complex assembly as shown here for P. berghei could occur in the human 

malaria parasite during gametocytogenesis.  

 Unravelling the molecular interactions of the LAP complex is important, because its disruption could 

be a way to achieve malaria transmission-blockade. LAPs are already expressed in blood stage gametocytes, 

particularly in P. falciparum, and accordingly the LAP complex could potentially be targeted in the human 

host before the parasite enters the mosquito. Furthermore, LAP knockout and mutational studies show that 

disruption of the LAP complex does not affect the parasite until after oocyst development, so the ookinete and 

oocyst burden in the insects are not reduced, yet the insects are not infective. Targeting the LAP complex 

therefore has the advantages that it would not rely on the uptake of the active compounds by the vector 

mosquito, and it would minimize risk of enhancing mosquito fitness as a consequence of lowering the parasite 

load in the insect, which could enhance vectorial capacity [21]. The identification of LAP1, and particularly 
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of its SRCR domains, as critical sites for LAP interaction and complex formation will aid future design and 

identification of small molecule inhibitors of these processes and downstream parasite transmission.  
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Figure legends 

 

Fig. 1 Schematic diagram of Plasmodium LAP1-LAP6 (PlasmoDB IDs shown on the right hand side). All 

proteins possess a predicted N-terminal ER signal peptide (red). A variety of modules are shown with 

significant homologies to known protein domains. Black: Limulus coagulation factor C, Coch-5b2 and Lgl1 

(LCCL) domain (Pfam03815, Smart00603); Light green: Polycystin-1, Lipoxygenase, Alpha-Toxin (PLAT) 

domain (Pfam01477, Smart00308); Light blue: scavenger receptor cysteine-rich (SRCR) domain (Pfam00530, 

Smart00202); Pink: pentaxin (PTX)/Laminin-G domain (Pfam00354, Smart00159); Orange: ricin-type beta 

trefoil lectin domain (Pfam00161, Smart00458); Red: coagulation factor 5/8 carboxy-terminal/discoidin 

domain (Pfam00754, Smart00231); Yellow: fibrillar collagen (COLFI) carboxy-terminal domain (Pfam01410, 

Smart00038)); Dark blue: Levanase-like domain; Purple: anthrax protective antigen domain (Pfam07691); 

Dark green: fibronectin type II domain (Pfam00040, Smart00059); Grey: apicomplexan-specific cysteine-rich 

domain.  

 

Fig. 2 Immunoaffinity pull-down of LAP complexes from P. berghei gametocytes with anti-GFP antibody-

coated magnetic beads. A: Coomassie brilliant blue staining shows specific pull down of the LAP3::GFP target 

protein and several other proteins (arrow heads). Lanes 1+2: wildtype; lanes 3+4; LAP3/GFP; lanes 1+3: 

before pull down; lanes 2+4: after pull down.  B: Western blot using anti-GFP antibodies shows enrichment 

of the LAP3::GFP target protein. Nonspecific (ns) antibody binding is indicated. Molecular weight markers in 

kDa are shown (M). 
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Table 1. Relative abundance of LAPs in GFP pull down samples from Plasmodium berghei parasite lines.  

____________________________________________________________________________________________________________________________ 

 

Parasite line1 

 

gametocyte 

 

ookinete 

 

crosslinked 

Relative percentage LFQ intensity (number of unique peptides) 

_____________________________________________________________ 

LAP1 LAP2 LAP3 LAP4 LAP5 LAP6 

____________________________________________________________________________________________________________________________ 

LAP3/GFP2 +   229 (45) 236 (55) 100 (35) 0 (0) 0 (0) 0 (0) 

LAP3/GFP +   277 (51) 93 (46) 100 (33) 0 (0) 0 (0) 0 (0) 

LAP3-KO3 +   0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

LAP3/GFP  +  249 (52) 261 (69) 100 (43) 0.2 (2) 0 (0) 0 (0) 

LAP3/GFP  +  452 (52) 439 (73) 100 (41) 0.6 (3) 0 (1) 0 (0) 

LAP3-KO  +  0 (1) 0 (2) 0 (1) 0 (0) 0 (0) 0 (0) 

LAP1/GFP4  +  1087 (43) 316 (18) 100 (12) 0 (0) 0 (0) 0 (0) 

LAP1-KO5  +  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

          

LAP4/GFP6  +  0 (0) 0 (0) 0 (0) 100 (14) 169 (11) 1.2 (3) 

LAP4/GFP  +  0 (0) 0 (0) 0 (0) 100 (8) 18 (7) 0 (0) 

LAP5/GFP6  +  0 (0) 0 (0) 0 (0) 652 (17) 100 (9) 0 (0) 

LAP5/GFP  +  0 (0) 0 (0) 0 (0) 254 (17) 100 (6) 0 (0) 

LAP6/GFP5  +  0 (0) 0 (0) 0 (0) 0 (0) 0.8 (1) 100 (14) 

LAP6/GFP  +  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (4) 

          

LAP3/GFP (LAP1-KO)7  +  0 (0) 550 (27) 100 (18) 0 (0) 0 (0) 0 (0) 

LAP3/GFP (LAP1-KO)  +  0 (0) 74 (12) 100 (12) 0 (0) 0 (0) 0 (0) 

          

LAP3/GFP  + + 270 (44) 282 (54) 100 (29) 222 (37) 151 (23) 15 (11) 

LAP3/GFP  + + 152 (52) 391 (84) 100 (50) 80 (35) 83 (24) 2.1 (12) 

LAP3/GFP (LAP1-KO)  + + 0 (0) 248 (56) 100 (32) 2.5 (4) 1.0 (3) 0 (0) 

LAP1SRCR/GFP4  + + 54 (27) 322 (59) 100 (37) 2.9 (5) 1.0 (5) 0 (0) 

LAP1PTX/GFP8  + + 112 (24) 216 (42) 100 (25) 56 (18) 18 (9) 1.8 (2) 

          

LAP3LCCL/GFP3  +  207 (59) 309 (79) 100 (42) 0 (0) 0 (1) 0 (0) 

LAP3LCCL/GFP  + + 172 (49) 352 (75) 100 (32) 67 (35) 42 (24) 4.0 (11) 

____________________________________________________________________________________________________________________________ 

1 Duplicate samples correspond to independent biological replicates. 

2 [11]. 

3 [10]. 

4 [5]. 

5 [6]. 

6 [16]. 

7 [17]. 

8 This paper (Fig. S1). 
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Supplemental Figure S1 

 

 



Fig. S1 Genotypic and phenotypic analyses of parasite line LAP1DPTX/GFP. A: Structure of wildtype (WT) 

and modified lap1 alleles in parasite lines LAP1/GFP and LAP1DPTX/GFP after double crossover 

homologous recombination. The lap1 gene is indicated with coding sequence (wide grey bars) and 5’ and 3’ 

untranslated regions (UTRs) (narrow grey bars). Also indicated are the PTX domain (black); the GFP 

module; the TgDHFR selectable marker gene cassette and primers used for diagnostic PCR amplification 

(P1-P5). Primer P2 sequence is not present within the targeting vector. Diagnostic PCR product sizes are 

indicated with arrowed lines and numbers (kb). B: Diagnostic PCR across the 3'-integration site with primers 

P1 (TCGTGGGCTACGTCCCGCAC) and P2 (CGCCTTCACGCTGATGT) amplify an approximately 1kb 

product in parasite lines LAP1DPTX/GFP as well as in parasites expressing full-length GFP-tagged LAP1, 

showing integration of the selectable marker into the lap1 locus. Diagnostic PCR with primers P3 

(AAACATTTTTCGAGCATAATATG) and P4 (ATGAGGGCCCCTAAGCTTAAGCGTTTCAAAAAGG-

TAAATGA) amplify a 1.4kb product from both WT parasites and parasites expressing full-length GFP-

tagged LAP1, while they amplify a 0.9kb fragment from parasite line LAP1DPTX/GFP, confirming absence 

of the PTX domain-encoding sequence in the latter parasite. Diagnostic PCR with primers P5 

(GCATGATGAGGATAATAATAAAACT) and P2 amplify an approximately 1.5kb fragment only from the 

parental WT parasites, confirming absence of the unmodified lap1 allele in the transgenic parasite lines. The 

same primer pair instead amplify much larger products in the transgenic parasite lines (approximately 7.7kb 

and 7.2kb in LAP1/GFP and LAP1DPTX/GFP, respectively), because of the presence of additional 

sequences between the primer annealing sites. C: Confocal brightfield and fluorescence images of a typical 

ookinete of parasite line LAP1DPTX/GFP, showing absence of focal spots corresponding to crystalloids. D: 

Transmission electron micrograph of a typical LAP1DPTX/GFP ookinete thin section, showing absence of 

crystalloids. E: Brightfield image of an Anopheles stephensi midgut section at 2 weeks post-infection with 

parasite line LAP1DPTX/GFP, showing non-sporulating oocysts. 
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Table S1. Relative abundance of LAPs in GFP pull down samples from Plasmodium berghei parasite lines.  
____________________________________________________________________________________________________________________________ 

 

Parasite line 

 

gametocyte 

 

ookinete 

 

crosslinked 

LFQ intensity  

_____________________________________________________________ 

LAP1 LAP2 LAP3 LAP4 LAP5 LAP6 

____________________________________________________________________________________________________________________________ 

LAP3/GFP +   76001000 78178000 33188000 0 0 0 

LAP3/GFP +   57151000 19142000 20605000 0 0 0 

LAP3-KO +   0 0 0 0 0 0 

LAP3/GFP  +  141100000 147900000 56656000 84248 0 0 

LAP3/GFP  +  208560000 203210000 46269000 278540 0 0 

LAP3-KO  +  0 0 0 0 0 0 

LAP1/GFP  +  77120000 22450000 7093800 0 0 0 

LAP1-KO  +  0 0 0 0 0 0 

          

LAP4/GFP  +  0 0 0 14160000 23920000 317420 

LAP4/GFP  +  0 0 0 41938000 7493700 0 

LAP5/GFP  +  0 0 0 23050000 3532700 0 

LAP5/GFP  +  0 0 0 12929000 5087900 0 

LAP6/GFP  +  0 0 0 0 32435 4041100 

LAP6/GFP  +  0 0 0 0 0 783480 

          

LAP3/GFP (LAP1-KO)  +  0 107610000 19640000 0 0 0 

LAP3/GFP (LAP1-KO)  +  0 2968900 4020400 0 0 0 

          

LAP3/GFP  + + 80922000 84715000 30014000 66883000 45241000 4486800 

LAP3/GFP  + + 132900000 341900000 87438000 70305000 72480000 1849900 

LAP3/GFP (LAP1-KO)  + + 0 77154000 31079000 783880 252280 0 

LAP1DSRCR/GFP  + + 31100000 183590000 57184000 1670300 554360 0 

LAP1DPTX/GFP  + + 30212000 58171000 26993000 15206000 4767100 493400 

          

LAP3DLCCL/GFP  +  163040000 243100000 78705000 0 0 0 

LAP3DLCCL/GFP  + + 69466000 142360000 40358000 27266000 16924000 1624200 

____________________________________________________________________________________________________________________________ 

	


