8 research outputs found

    ERCC1/XPF protects short telomeres from homologous recombination in Arabidopsis thaliana.

    Get PDF
    International audienceMany repair and recombination proteins play essential roles in telomere function and chromosome stability, notwithstanding the role of telomeres in "hiding" chromosome ends from DNA repair and recombination. Among these are XPF and ERCC1, which form a structure-specific endonuclease known for its essential role in nucleotide excision repair and is the subject of considerable interest in studies of recombination. In contrast to observations in mammalian cells, we observe no enhancement of chromosomal instability in Arabidopsis plants mutated for either XPF (AtRAD1) or ERCC1 (AtERCC1) orthologs, which develop normally and show wild-type telomere length. However, in the absence of telomerase, mutation of either of these two genes induces a significantly earlier onset of chromosomal instability. This early appearance of telomere instability is not due to a general acceleration of telomeric repeat loss, but is associated with the presence of dicentric chromosome bridges and cytologically visible extrachromosomal DNA fragments in mitotic anaphase. Such extrachromosomal fragments are not observed in later-generation single-telomerase mutant plants presenting similar frequencies of anaphase bridges. Extensive FISH analyses show that these DNAs are broken chromosomes and correspond to two specific chromosome arms. Analysis of the Arabidopsis genome sequence identified two extensive blocks of degenerate telomeric repeats, which lie at the bases of these two arms. Our data thus indicate a protective role of ERCC1/XPF against 3' G-strand overhang invasion of interstitial telomeric repeats. The fact that the Atercc1 (and Atrad1) mutants dramatically potentiate levels of chromosome instability in Attert mutants, and the absence of such events in the presence of telomerase, have important implications for models of the roles of recombination at telomeres and is a striking illustration of the impact of genome structure on the outcomes of equivalent recombination processes in different organisms

    Arabidopsis ATM and ATR Kinases Prevent Propagation of Genome Damage Caused by Telomere Dysfunction

    No full text
    International audienceThe ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells

    Arabidopsis

    No full text

    Distinct Roles of the ATR Kinase and the Mre11-Rad50-Nbs1 Complex in the Maintenance of Chromosomal Stability in Arabidopsis

    No full text
    DNA damage signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. This work confirms that the signaling of double-strand damage is conserved in plants and provides evidence for key roles of the MRN complex and ATR in assuring proper DNA replication in the absence of exogenously induced DNA damage

    Two roles for Rad50 in telomere maintenance

    No full text
    We describe two roles for the Rad50 protein in telomere maintenance and the protection of chromosome ends. Using fluorescence in situ hybridisation (FISH) and fibre-FISH analyses, we show that absence of AtRad50 protein leads to rapid shortening of a subpopulation of chromosome ends and subsequently chromosome-end fusions lacking telomeric repeats. In the absence of telomerase, mutation of atrad50 has a synergistic effect on the number of chromosome end fusions. Surprisingly, this ‘deprotection' of the shortened telomeres does not result in increased exonucleolytic degradation, but in a higher proportion of anaphase bridges containing telomeric repeats in atrad50/tert plants, compared to tert mutant plants. Absence of AtRad50 thus facilitates the action of recombination on these shortened telomeres. We propose that this protective role of Rad50 protein on shortened telomeres results from its action in constraining recombination to sister chromatids and thus avoiding end-to-end interactions
    corecore