15 research outputs found

    Sulfation of a High Endothelial Venule–Expressed Ligand for L-Selectin: Effects on Tethering and Rolling of Lymphocytes

    Get PDF
    During lymphocyte homing, L-selectin mediates the tethering and rolling of lymphocytes on high endothelial venules (HEVs) in secondary lymphoid organs. The L-selectin ligands on HEV are a set of mucin-like glycoproteins, for which glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) is a candidate. Optimal binding in equilibrium measurements requires sulfation, sialylation, and fucosylation of ligands. Analysis of GlyCAM-1 has revealed two sulfation modifications (galactose [Gal]-6-sulfate and N-acetylglucosamine [GlcNAc]-6-sulfate) of sialyl Lewis x. Recently, three related sulfotransferases (keratan sulfate galactose-6-sulfotransferase [KSGal6ST], high endothelial cell N-acetylglucosamine-6-sulfotransferase [GlcNAc6ST], and human GlcNAc6ST) were cloned, which can generate Gal-6-sulfate and GlcNAc-6-sulfate in GlyCAM-1. Imparting these modifications to GlyCAM-1, together with appropriate fucosylation, yields enhanced rolling ligands for both peripheral blood lymphocytes and Jurkat cells in flow chamber assays as compared with those generated with exogenous fucosyltransferase. Either sulfation modification results in an increased number of tethered and rolling lymphocytes, a reduction in overall rolling velocity associated with more frequent pausing of the cells, and an enhanced resistance of rolling cells to detachment by shear. All of these effects are predicted to promote the overall efficiency of lymphocyte homing. In contrast, the rolling interactions of E-selectin transfectants with the same ligands are not affected by sulfation

    Sulfation of L-Selectin Ligands by an HEV-Restricted Sulfotransferase Regulates Lymphocyte Homing to Lymph Nodes

    Get PDF
    AbstractLymphocytes home to lymph nodes, using L-selectin to bind specific ligands on high endothelial venules (HEV). In vitro studies implicate GlcNAc-6-sulfate as an essential posttranslational modification for ligand activity. Here, we show that genetic deletion of HEC-GlcNAc6ST, a sulfotransferase that is highly restricted to HEV, results in the loss of the binding of recombinant L-selectin to the luminal aspect of HEV, elimination of lymphocyte binding in vitro, and markedly reduced in vivo homing. Reactivity with MECA 79, an adhesion-blocking mAb that stains HEV in lymph nodes and vessels in chronic inflammatory sites, is also lost from the luminal aspects of HEV. These results establish a critical role for HEC-GlcNAc6ST in lymphocyte trafficking and suggest it as an important therapeutic target

    Lymphocyte–HEV Interactions in Lymph Nodes of a Sulfotransferase-deficient Mouse

    No full text
    The interaction of L-selectin expressed on lymphocytes with sulfated sialomucin ligands such as CD34 and GlyCAM-1 on high endothelial venules (HEV) of lymph nodes results in lymphocyte rolling and is essential for lymphocyte recruitment. HEC-GlcNAc6ST–deficient mice lack an HEV-restricted sulfotransferase with selectivity for the C-6 position of N-acetylglucosamine (GlcNAc). HEC-GlcNAc6ST−/− animals exhibit faster lymphocyte rolling and reduced lymphocyte sticking in HEV, accounting for the diminished lymphocyte homing. Isolated CD34 and GlyCAM-1 from HEC-GlcNAc6ST−/− animals incorporate ∼70% less sulfate than ligands from wild-type animals. Furthermore, these ligands exhibit a comparable reduction of the epitope recognized by MECA79, a function-blocking antibody that reacts with L-selectin ligands in a GlcNAc-6-sulfate–dependent manner. Whereas MECA79 dramatically inhibits lymphocyte rolling and homing to lymph nodes in wild-type mice, it has no effect on HEC-GlcNAc6ST−/− mice. In contrast, in vitro rolling on purified GlyCAM-1 from HEC-GlcNAc6ST−/− mice, although greatly diminished compared with that on the wild-type ligand, is inhibited by MECA79. Our results demonstrate that HEC-GlcNAc6ST contributes predominantly, but not exclusively, to the sulfation of HEV ligands for L-selectin and that alternative, non-MECA79–reactive ligands are present in the absence of HEC-GlcNAc6ST

    HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1

    Get PDF
    BackgroundHeparin/heparan sulfate (HS) proteoglycans are found in the extracellular matrix (ECM) and on the cell surface. A considerable body of evidence has established that heparin and heparan sulfate proteoglycans (HSPGs) interact with numerous protein ligands including fibroblast growth factors, vascular endothelial growth factor (VEGF), cytokines, and chemokines. These interactions are highly dependent upon the pattern of sulfation modifications within the glycosaminoglycan chains. We previously cloned a cDNA encoding a novel human endosulfatase, HSulf-2, which removes 6-O-sulfate groups on glucosamine from subregions of intact heparin. Here, we have employed both recombinant HSulf-2 and the native enzyme from conditioned medium of the MCF-7-breast carcinoma cell line. To determine whether HSulf-2 modulates the interactions between heparin-binding factors and heparin, we developed an ELISA, in which soluble factors were allowed to bind to immobilized heparin.ResultsOur results show that the binding of VEGF, FGF-1, and certain chemokines (SDF-1 and SLC) to immobilized heparin was abolished or greatly diminished by pre-treating the heparin with HSulf-2. Furthermore, HSulf-2 released these soluble proteins from their association with heparin. Native Sulf-2 from MCF-7 cells reproduced all of these activities.ConclusionOur results validate Sulf-2 as a new tool for deciphering the sulfation requirements in the interaction of protein ligands with heparin/HSPGs and expand the range of potential biological activities of this enzyme

    Sulf-2, a Proangiogenic Heparan Sulfate Endosulfatase, Is Upregulated in Breast Cancer

    Get PDF
    Sulf-2 is an endosulfatase with activity against glucosamine-6-sulfate modifications within subregions of intact heparin. The enzyme has the potential to modify the sulfation status of extracellular heparan sulfate proteoglycan (HSPG) glycosaminoglycan chains and thereby to regulate interactions with HSPG-binding proteins. In the present investigation, data mining from published studies was employed to establish Sulf-2 mRNA upregulation in human breast cancer. We further found that cultured breast carcinoma cells expressed Sulf-2 mRNA and released enzymatically active proteins into conditioned medium. In two mouse models of mammary carcinoma, Sulf-2 mRNA was upregulated in comparison to its expression in normal mammary gland. Although mRNA was present in normal tissues, Sulf-2 protein was undetectable; it was, however, detected in some premalignant lesions and in tumors. The protein was localized to the epithelial cells of the tumors. In support of the possible mechanistic relevance of Sulf-2 upregulation in tumors, purified recombinant Sulf-2 promoted angiogenesis in the chick chorioallantoic membrane assay
    corecore