6 research outputs found

    Children’s Internal Attributions of Anxiety-Related Physical Symptoms: Age-Related Patterns and the Role of Cognitive Development and Anxiety Sensitivity

    Get PDF
    The present study examined age-related patterns in children’s anxiety-related interpretations and internal attributions of physical symptoms. A large sample of 388 children aged between 4 and 13 years completed a vignette paradigm during which they had to explain the emotional response of the main character who experienced anxiety-related physical symptoms in a variety of daily situations. In addition, children completed measures of cognitive development and anxiety sensitivity. Results demonstrated that age, cognitive development, and anxiety sensitivity were all positively related to children’s ability to perceive physical symptoms as a signal of anxiety and making internal attributions. Further, while a substantial proportion of the younger children (i.e., <7 years) were able to make a valid anxiety-related interpretation of a physical symptom, very few were capable of making an internal attribution, which means that children of this age lack the developmental prerequisites for applying physical symptoms-based theories of childhood anxiety

    Processes of Change in Cognitive-Behavioural Treatment of Obsessive-Compulsive Disorder: Current Status and Some Future Directions

    No full text
    The present paper discusses theoretical and methodological issues involved in the processes of change in cognitive-behavioural treatment (CBT) of obsessive-compulsive disorder (OCD). Treatment outcome studies showed that CBT is effective in reducing obsessive-compulsive symptoms. However, why and how CBT works cannot be corroborated by comparing pre- and post-assessment. Recently, there has been a resurgence of interest in theory driven process studies. By showing patterns of change over time, process studies can contribute to our insight into the actual mechanisms of change during treatment. We review process research in the field of OCD and discuss methodological issues involved in process studies for this particular disorder. It is concluded that studying the processes of change harbours promising possibilities for bridging the gap between theory and clinical practice. Copyright (C) 2009 John Wiley & Sons, Ltd

    Allogeneic Mature Human Dendritic Cells Generate Superior Alloreactive Regulatory T Cells in the Presence of IL-15

    No full text
    Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-gamma, and TNF-alpha, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function

    Tetraspanin microdomains control localized protein kinase C signaling in B cells

    No full text
    Activation of B cells by the binding of antigens to the B cell receptor (BCR) requires the protein kinase C (PKC) family member PKC beta. Because PKCs must translocate to the plasma membrane to become activated, we investigated the mechanisms regulating their spatial distribution in mouse and human B cells. Through live-cell imaging, we showed that BCR-stimulated production of the second messenger diacylglycerol (DAG) resulted in the translocation of PKC beta from the cytosol to plasma membrane regions containing the tetraspanin protein CD53. CD53 was specifically enriched at sites of BCR signaling, suggesting that BCR-dependent PKC signaling was initiated at these tetraspanin microdomains. Fluorescence lifetime imaging microscopy studies confirmed the molecular recruitment of PKC to CD53-containing microdomains, which required the amino terminus of CD53. Furthermore, we showed that Cd53-deficient B cells were defective in the phosphorylation of PKC substrates. Consistent with this finding, PKC recruitment to the plasma membrane was impaired in both mouse and human CD53-deficient B cells compared to that in their wild-type counterparts. These data suggest that CD53 promotes BCR-dependent PKC signaling by recruiting PKC to the plasma membrane so that it can phosphorylate its substrates and that tetraspanin-containing microdomains can act as signaling hotspots in the plasma membrane

    Tetraspanin microdomains control localized protein kinase C signaling in B cells

    No full text
    Activation of B cells by the binding of antigens to the B cell receptor (BCR) requires the protein kinase C (PKC) family member PKC beta. Because PKCs must translocate to the plasma membrane to become activated, we investigated the mechanisms regulating their spatial distribution in mouse and human B cells. Through live-cell imaging, we showed that BCR-stimulated production of the second messenger diacylglycerol (DAG) resulted in the translocation of PKC beta from the cytosol to plasma membrane regions containing the tetraspanin protein CD53. CD53 was specifically enriched at sites of BCR signaling, suggesting that BCR-dependent PKC signaling was initiated at these tetraspanin microdomains. Fluorescence lifetime imaging microscopy studies confirmed the molecular recruitment of PKC to CD53-containing microdomains, which required the amino terminus of CD53. Furthermore, we showed that Cd53-deficient B cells were defective in the phosphorylation of PKC substrates. Consistent with this finding, PKC recruitment to the plasma membrane was impaired in both mouse and human CD53-deficient B cells compared to that in their wild-type counterparts. These data suggest that CD53 promotes BCR-dependent PKC signaling by recruiting PKC to the plasma membrane so that it can phosphorylate its substrates and that tetraspanin-containing microdomains can act as signaling hotspots in the plasma membrane.</p

    Allogeneic Mature Human Dendritic Cells Generate Superior Alloreactive Regulatory T Cells in the Presence of IL-15

    No full text
    Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-gamma, and TNF-alpha, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function
    corecore