18 research outputs found

    An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

    Get PDF
    Background: Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new reference genome sequence, PcyM, sourced from an Indian rhesus monkey. We compare the newly assembled genome sequence with those of several other Plasmodium species, including a re-annotated P. coatneyi assembly. Results: The new PcyM genome assembly is of significantly higher quality than the existing reference, comprising only 56 pieces, no gaps and an improved average gene length. Detailed manual curation has ensured a comprehensive annotation of the genome with 6,632 genes, nearly 1,000 more than previously attributed to P. cynomolgi. The new assembly also has an improved representation of the subtelomeric regions, which account for nearly 40% of the sequence. Within the subtelomeres, we identified more than 1300 Plasmodium interspersed repeat (pir) genes, as well as a striking expansion of 36 methyltransferase pseudogenes that originated from a single copy on chromosome 9. Conclusions: The manually curated PcyM reference genome sequence is an important new resource for the malaria research community. The high quality and contiguity of the data have enabled the discovery of a novel expansion of methyltransferase in the subtelomeres, and illustrates the new comparative genomics capabilities that are being unlocked by complete reference genomes

    KAI407, a potent non-8-aminoquinoline compound that kills Plasmodium cynomolgi early dormant liver stage parasites in vitro.

    Get PDF
    Preventing relapses of Plasmodium vivax malaria through a radical cure depends on use of the 8-aminoquinoline primaquine, which is associated with safety and compliance issues. For future malaria eradication strategies, new, safer radical curative compounds that efficiently kill dormant liver stages (hypnozoites) will be essential. A new compound with potential radical cure activity was identified using a low-throughput assay of in vitro-cultured hypnozoite forms of Plasmodium cynomolgi (an excellent and accessible model for Plasmodium vivax). In this assay, primary rhesus hepatocytes are infected with P. cynomolgi sporozoites, and exoerythrocytic development is monitored in the presence of compounds. Liver stage cultures are fixed after 6 days and stained with anti-Hsp70 antibodies, and the relative proportions of small (hypnozoite) and large (schizont) forms relative to the untreated controls are determined. This assay was used to screen a series of 18 known antimalarials and 14 new non-8-aminoquinolines (preselected for blood and/or liver stage activity) in three-point 10-fold dilutions (0.1, 1, and 10 μM final concentrations). A novel compound, designated KAI407 showed an activity profile similar to that of primaquine (PQ), efficiently killing the earliest stages of the parasites that become either primary hepatic schizonts or hypnozoites (50% inhibitory concentration [IC50] for hypnozoites, KAI407, 0.69 μM, and PQ, 0.84 μM; for developing liver stages, KAI407, 0.64 μM, and PQ, 0.37 μM). When given as causal prophylaxis, a single oral dose of 100 mg/kg of body weight prevented blood stage parasitemia in mice. From these results, we conclude that KAI407 may represent a new compound class for P. vivax malaria prophylaxis and potentially a radical cure

    Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    Get PDF
    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals

    Transfection Models to Investigate <i>Plasmodium vivax</i>-Type Dormant Liver Stage Parasites

    No full text
    Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology

    Suppression of Plasmodium cynomolgi in Rhesus Macaques by Coinfection with Babesia microti▿ †

    No full text
    Both Plasmodium and Babesia species are intraerythrocytic protozoans that infect a wide range of hosts, including humans, and they elicit similar inflammatory responses and clinical manifestations that differ markedly in severity. We recently reported that a rhesus macaque that was chronically infected with Babesia microti was able to control infection with Plasmodium cynomolgi (a parasite of macaques with characteristics very similar to those of Plasmodium vivax) better than naïve monkeys. To confirm this and to investigate the underlying immunopathology, six naïve rhesus monkeys were infected with B. microti. After 24 days, four of these monkeys and four naïve rhesus monkeys were challenged with P. cynomolgi blood-stage parasites. B. microti persisted at low levels in all monkeys, and the clinical parameters were comparable to those of noninfected controls. There was a significant decrease in P. cynomolgi parasitemia in animals coinfected with B. microti compared to the parasitemia in animals infected with P. cynomolgi alone. This decrease in P. cynomolgi parasitemia correlated with increases in the levels of proinflammatory monocytes at the time of P. cynomolgi infection and with higher C-reactive protein (CRP) serum levels 1 week after malaria infection. Therefore, we conclude that ongoing infection with B. microti parasites leads to suppression of malaria infection

    Transcriptional profiling of hepatocytes infected with the replicative form of the malaria parasite Plasmodium cynomolgi.

    No full text
    The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection.Previously published RNA sequencing data were used to quantify the expression of host genes in rhesus macaque hepatocytes infected with P. cynomolgi in comparison to either cells from uninfected samples or uninfected bystander cells.Although the dataset could not be used to resolve the transcriptional profile of hypnozoite-infected hepatocytes, it provided a snapshot of the host response to liver stage schizonts at 9-10 day post-infection and identified specific host pathways that are modulated during the exo-erythrocytic stage of P. cynomolgi.This study constitutes a valuable resource characterizing the hepatocyte response to P. cynomolgi infection and provides a framework to build on future research that aims at understanding hepatocyte-parasite interactions during relapsing malaria infection

    A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation

    No full text
    Plasmodium vivax malaria is characterized by repeated episodes of blood stage infection (relapses) resulting from activation of dormant stages in the liver, so-called hypnozoites. Transition of hypnozoites into developing schizonts has never been observed. A barrier for studying this has been the lack of a system in which to monitor growth of liver stages. Here, exploiting the unique strengths of the simian hypnozoite model P. cynomolgi, we have developed green-fluorescent (GFP) hypnozoites that turn on red-fluorescent (mCherry) upon activation. The transgenic parasites show full liver stage development, including merozoite release and red blood cell infection. We demonstrate that individual hypnozoites actually can activate and resume development after prolonged culture, providing the last missing evidence of the hypnozoite theory of relapse. The few events identified indicate that hypnozoite activation in vitro is infrequent. This system will further our understanding of the mechanisms of hypnozoite activation and may facilitate drug discovery approaches

    Reactivity of <i>Aotus</i> sera with parasite proteins.

    No full text
    <p>Schizont extracts from the Wellcome (W) and 3D7 (3) isolates were probed by Western blotting with sera from all four immunized animals. Serum samples from day 97 (pre-challenge) and day 120 (post challenge) from each animal were tested in parallel on contiguous parts of the same membrane. Immunized animal code numbers are shown on the left of each panel. Arrowheads indicate reactivity with the N-terminal p83 proteolytic fragment of MSP-1. The dominant 50 kDa band in all blots is the heavy chain of human IgG, recognized by the secondary reagent (HRP conjugated anti-human IgG heavy chain).</p

    A. Antigen specific antibody titers of sera from <i>Aotus</i> monkeys immunized with the GST-FVO Block 2 fusion protein. Serum samples collected at the time points listed in Table 2 were tested for reactivity with cleaved, purified FVO MSP-1 Block 2. Small arrows indicate immunization time points. Large arrow indicates <i>P. falciparum</i> challenge time point. Titers were calculated by interpolation from titration curves for each serum sample, with the endpoint titer defined as the dilution that gave an optical density value of 0.1. B. Parasite-reactive antibody titers of sera from four immunized <i>Aotus</i> (A53, A66, A9801, A9802) plus control animals (A9804, A9902). Sera were tested by IFA against the Wellcome <i>P. falciparum</i> strain (which has an identical MSP-1 Block 2 sequence to FVO). Hollow symbols, immunized animals; filled symbols, control (non-immunized) animals. Small arrows indicate immunization time points.

    No full text
    <p>A. Antigen specific antibody titers of sera from <i>Aotus</i> monkeys immunized with the GST-FVO Block 2 fusion protein. Serum samples collected at the time points listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0083704#pone-0083704-t002" target="_blank">Table 2</a> were tested for reactivity with cleaved, purified FVO MSP-1 Block 2. Small arrows indicate immunization time points. Large arrow indicates <i>P. falciparum</i> challenge time point. Titers were calculated by interpolation from titration curves for each serum sample, with the endpoint titer defined as the dilution that gave an optical density value of 0.1. B. Parasite-reactive antibody titers of sera from four immunized <i>Aotus</i> (A53, A66, A9801, A9802) plus control animals (A9804, A9902). Sera were tested by IFA against the Wellcome <i>P. falciparum</i> strain (which has an identical MSP-1 Block 2 sequence to FVO). Hollow symbols, immunized animals; filled symbols, control (non-immunized) animals. Small arrows indicate immunization time points.</p
    corecore