9 research outputs found

    High susceptibility of c-KIT+CD34+ precursors to prolonged doxorubicin exposure interferes with Langerhans cell differentiation in a human cell line model

    Get PDF
    As neoadjuvant and adjuvant chemotherapy schedules often consist of multiple treatment cycles over relatively long periods of time, it is important to know what effects protracted drug administration can have on the immune system. Here, we studied the long-term effects of doxorubicin on the capacity of dendritic cell (DC) precursors to differentiate into a particular DC subset, the Langerhans cells (LC). In order to achieve high telomerase activity as detected in hematological stem cells, precursor cells from the acute-myeloid leukemia (AML)-derived cell line MUTZ3 were stably transduced with human telomerase reverse transcriptase (hTERT) to facilitate their growth potential, while preventing growth, and drug-induced senescence, and preserving their unique capacity for cytokine-dependent DC and LC differentiation. The hTERT-MUTZ3 cells were selected with increasing concentrations of the anthracyclin doxorubicin. After 1–2 months of selection with 30–90 nM doxorubicin, the cells completely lost their capacity to differentiate into LC. This inhibition turned out to be reversible, as the cells slowly regained their capacity to differentiate after a 3- to 4-month drug-free period and with this became capable again of priming allogeneic T cells. Of note, the loss and gain of this capacity to differentiate coincided with the loss and gain of a subpopulation within the CD34+ proliferative compartment with surface expression of the stem cell factor receptor (SCF-R/CD117/c-Kit). These data are in favor of cytostatic drug-free intervals before applying autologous DC-based vaccination protocols, as specific DC precursors may need time to recover from protracted chemotherapy treatment and re-emerge among the circulating CD34+ hematopoietic stem and precursor cells

    Up-regulation of drug resistance-related vaults during dendritic cell development

    No full text
    P-glycoprotein (Pgp) and vaults are associated with multidrug resistance in tumor cells, but their physiological functions are not yet clear. Pgp, the prototypical transmembrane transporter molecule, may also facilitate the migration of skin dendritic cells (DC). Vaults - ribonucleoprotein cell organelles, frequently overexpressed in Pgp-negative drug-resistant tumor cells - have also been associated with intracellular transport processes. Given the pivotal role of DC in dealing with exposure to potentially harmful substances, the present study was set out to examine the expression of Pgp and vaults during differentiation and maturation of DC. DC were obtained from different sources, including blood-derived monocytes, CD34+ mononuclear cells, and chronic myeloid leukemia cells. Whereas flow cytometric and immunocytochemical analyses showed slightly augmented levels of Pgp, up-regulation of vault expression during DC culturing was strong, readily confirmed by Western blotting, and independent of the source of DC. In further exploring the functional significance of vault expression, it was found that supplementing DC cultures with polyclonal or mAbs against the major vault protein led to lower viabilities of LPS- or TNF-α-matured monocytes-DC. Moreover, expression of critical differentiation, maturation, and costimulatory molecules, including CD1a and CD83, was reduced and their capacity to induce Ag-specific T cell proliferative and IFN-γ release responses was impaired. These data point to a role for vaults in both DC survival and functioning as APC

    Up-Regulation of Drug Resistance-Related Vaults During Dendritic Cell Development

    No full text
    P-glycoprotein (Pgp) and vaults are associated with multidrug resistance in tumor cells, but their physiological functions are not yet clear. Pgp, the prototypical transmembrane transporter molecule, may also facilitate the migration of skin dendritic cells (DC). Vaults - ribonucleoprotein cell organelles, frequently overexpressed in Pgp-negative drug-resistant tumor cells - have also been associated with intracellular transport processes. Given the pivotal role of DC in dealing with exposure to potentially harmful substances, the present study was set out to examine the expression of Pgp and vaults during differentiation and maturation of DC. DC were obtained from different sources, including blood-derived monocytes, CD34+ mononuclear cells, and chronic myeloid leukemia cells. Whereas flow cytometric and immunocytochemical analyses showed slightly augmented levels of Pgp, up-regulation of vault expression during DC culturing was strong, readily confirmed by Western blotting, and independent of the source of DC. In further exploring the functional significance of vault expression, it was found that supplementing DC cultures with polyclonal or mAbs against the major vault protein led to lower viabilities of LPS- or TNF-α-matured monocytes-DC. Moreover, expression of critical differentiation, maturation, and costimulatory molecules, including CD1a and CD83, was reduced and their capacity to induce Ag-specific T cell proliferative and IFN-γ release responses was impaired. These data point to a role for vaults in both DC survival and functioning as APC
    corecore