7 research outputs found

    CHARACTERIZATION OF GCN5 HISTONE ACETYLTRANSFERASE ACTIVITY AND BROMODOMAIN ACETYL-LYSINE BINDING FUNCTION

    Get PDF
    In eukaryotes, DNA is packaged into chromatin, which consists of the DNA wrapped around an octameric core of histone proteins (H2A, H2B, H3, and H4) which collectively comprise the nucleosome. Gene activation and silencing determined by the access of transcriptional machinery to DNA can be dictated in part by dynamic post-translational modifications (PTMs) on histone proteins. These PTMs can be added, removed, and interpreted by chromatin effector complexes that interact with chromatin. In yeast, the highly conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. Consistent with our in vitro results, when the Gcn5 bromodomain was impaired in vivo we observed a global decrease in H3K18 acetylation. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Through our development of in vitro assays that contain selectively modified histones and intact epigenetic complexes and modules, we can gain biologically relevant insight into the activity and chromatin interactions of effector protein complexes. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code.

    CHARACTERIZATION OF GCN5 HISTONE ACETYLTRANSFERASE ACTIVITY AND BROMODOMAIN ACETYL-LYSINE BINDING FUNCTION

    No full text
    In eukaryotes, DNA is packaged into chromatin, which consists of the DNA wrapped around an octameric core of histone proteins (H2A, H2B, H3, and H4) which collectively comprise the nucleosome. Gene activation and silencing determined by the access of transcriptional machinery to DNA can be dictated in part by dynamic post-translational modifications (PTMs) on histone proteins. These PTMs can be added, removed, and interpreted by chromatin effector complexes that interact with chromatin. In yeast, the highly conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. Consistent with our in vitro results, when the Gcn5 bromodomain was impaired in vivo we observed a global decrease in H3K18 acetylation. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Through our development of in vitro assays that contain selectively modified histones and intact epigenetic complexes and modules, we can gain biologically relevant insight into the activity and chromatin interactions of effector protein complexes. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code.

    Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody

    No full text
    Objective: Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D. Methods: A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain. Cell based assays demonstrated agonist and sensitizer effects of IRAB-A on IR and Akt phosphorylation, as well as glucose uptake. Lean and diet-induced obese mice were used to characterize single-dose in vivo pharmacological effects of IRAB-A; multiple-dose IRAB-A effects were tested in obese mice. Results: In vitro studies indicate that IRAB-A exhibits sensitizer and agonist properties distinct from insulin on the IR and is translated to downstream signaling and function; IRAB-A bound specifically and allosterically to the IR and stabilized insulin binding. A single dose of IRAB-A given to lean mice rapidly reduced fed blood glucose for approximately 2 weeks, with concomitant reduced insulin levels suggesting improved insulin sensitivity. Phosphorylated IR (pIR) from skeletal muscle and liver were increased by IRAB-A; however, phosphorylated Akt (pAkt) levels were only elevated in skeletal muscle and not liver vs. control; immunochemistry analysis (IHC) confirmed the long-lived persistence of IRAB-A in skeletal muscle and liver. Studies in diet-induced obese (DIO) mice with IRAB-A reduced fed blood glucose and insulinemia yet impaired glucose tolerance and led to protracted insulinemia during a meal challenge. Conclusion: Collectively, the data suggest IRAB-A acts allosterically on the insulin receptor acting non-competitively with insulin to both activate the receptor and enhance insulin signaling. While IRAB-A produced a decrease in blood glucose in lean mice, the data in DIO mice indicated an exacerbation of insulin resistance; these data were unexpected and suggested the interplay of complex unknown pharmacology. Taken together, this work suggests that IRAB-A may be an important tool to explore insulin receptor signaling and pharmacology. Keywords: Insulin, Insulin receptor, Positive allosteric modulator, Monoclonal antibody, Diabete

    A Selective Phenelzine Analogue Inhibitor of Histone Demethylase LSD1

    No full text
    Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor <i>in vitro</i> and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2. Bizine was found to be effective at modulating bulk histone methylation in cancer cells, and ChIP-seq experiments revealed a statistically significant overlap in the H3K4 methylation pattern of genes affected by bizine and those altered in LSD1–/– cells. Treatment of two cancer cell lines, LNCaP and H460, with bizine conferred a reduction in proliferation rate, and bizine showed additive to synergistic effects on cell growth when used in combination with two out of five HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress were protected by the presence of bizine, suggesting potential applications in neurodegenerative disease

    A Selective Phenelzine Analogue Inhibitor of Histone Demethylase LSD1

    No full text
    Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor <i>in vitro</i> and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2. Bizine was found to be effective at modulating bulk histone methylation in cancer cells, and ChIP-seq experiments revealed a statistically significant overlap in the H3K4 methylation pattern of genes affected by bizine and those altered in LSD1–/– cells. Treatment of two cancer cell lines, LNCaP and H460, with bizine conferred a reduction in proliferation rate, and bizine showed additive to synergistic effects on cell growth when used in combination with two out of five HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress were protected by the presence of bizine, suggesting potential applications in neurodegenerative disease
    corecore