9,958 research outputs found
Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability
Heterogeneous computing, which combines devices with different architectures,
is rising in popularity, and promises increased performance combined with
reduced energy consumption. OpenCL has been proposed as a standard for
programing such systems, and offers functional portability. It does, however,
suffer from poor performance portability, code tuned for one device must be
re-tuned to achieve good performance on another device. In this paper, we use
machine learning-based auto-tuning to address this problem. Benchmarks are run
on a random subset of the entire tuning parameter configuration space, and the
results are used to build an artificial neural network based model. The model
can then be used to find interesting parts of the parameter space for further
search. We evaluate our method with different benchmarks, on several devices,
including an Intel i7 3770 CPU, an Nvidia K40 GPU and an AMD Radeon HD 7970
GPU. Our model achieves a mean relative error as low as 6.1%, and is able to
find configurations as little as 1.3% worse than the global minimum.Comment: This is a pre-print version an article to be published in the
Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). For personal use onl
Evolution and relationships of the conifer seed cone telemachus: Evidence from the triassic of antarctica
The seed cone Telemachus is known from several Triassic localities in Gondwana. New specimens from two localities in Antarctica provide additional information about the type species, Telemachus elongatus, based on details of morphology and anatomy revealed by using a modified transfer technique on the compressed plants. Seed cones of T. elongatus are up to 6.0 cm long and characterized by conspicuous, elongate bracts. A second Antarctic species, described here as Telemachus antarcticus, is segregated, based on a shorter bract and differences in cone size. Newly recognized features of the genus include the shape, size, and disposition of the ovules; vascularization of the ovuliferous complex; and scale and bract histology. As a result of this new information, it is now possible to compare Telemachus with the permineralized Middle Triassic conifer seed cone Parasciadopitys from the Central Transantarctic Mountains. The similarities between the two genera make it possible to relate organs in different preservational modes and to develop a more complete concept for this widely distributed Gondwana conifer. Placing the Telemachus plant within a phylogenetic context makes it possible to evaluate the relationship with other so-called transitional conifers, an informal group that has been interpreted as intermediate between Paleozoic and modern conifers.Fil: Escapa, Ignacio Hernán. University of Kansas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Decombeix, Anne-Laure. University of Kansas; Estados UnidosFil: Taylor, Edith L.. University of Kansas; Estados UnidosFil: Taylor, Thomas N.. University of Kansas; Estados Unido
Quantification of Bronchial Circulation Perfusion in Rats
The bronchial circulation is thought to be the primary blood supply for pulmonary carcinomas. Thus, we have developed a method for imaging and quantifying changes in perfusion in the rat lung due to development of the bronchial circulation. A dual-modality micro-CT/SPECT system was used to detect change in perfusion in two groups of rats: controls and those with a surgically occluded left pulmonary artery. Both groups were imaged following injections on separate days i) 2mCi of Tc99m labeled macroaggregated albumin (MAA) into the left carotid artery (IA) and ii) a similar injection into the femoral vein (IV). The IA injection resulted in Tc99m accumulation in capillaries of the systemic circulation including the bronchial circulation, whereas the IV resulted in Tc99m accumulation in the pulmonary capillaries. Ordered subset expectation maximization (OSEM) was used to reconstruct the SPECT image volumes and a Feldkamp algorithm was used to reconstruct the micro-CT image volumes. The micro-CT and SPECT volumes were registered, the SPECT image volume was segmented using the right and left lung boundaries defined from the micro-CT volume, and the ratio of IA radioactivity accumulation in the left lung to IV radioactivity accumulation in both lungs was used as a measure of left lung flow via the bronchial circulation. This ratio was ~0.02 for the untreated rats compared to the treated animals that had an increased flow ratio of ~0.21 40 days after left pulmonary artery occlusion. This increase in flow to the occluded left lung via the bronchial circulation suggests this will be a useful model for further investigating antiangiogenic treatments
Quantification of Bronchial Circulation Perfusion in Rats
The bronchial circulation is thought to be the primary blood supply for pulmonary carcinomas. Thus, we have developed a method for imaging and quantifying changes in perfusion in the rat lung due to development of the bronchial circulation. A dual-modality micro-CT/SPECT system was used to detect change in perfusion in two groups of rats: controls and those with a surgically occluded left pulmonary artery. Both groups were imaged following injections on separate days i) 2mCi of Tc99m labeled macroaggregated albumin (MAA) into the left carotid artery (IA) and ii) a similar injection into the femoral vein (IV). The IA injection resulted in Tc99m accumulation in capillaries of the systemic circulation including the bronchial circulation, whereas the IV resulted in Tc99m accumulation in the pulmonary capillaries. Ordered subset expectation maximization (OSEM) was used to reconstruct the SPECT image volumes and a Feldkamp algorithm was used to reconstruct the micro-CT image volumes. The micro-CT and SPECT volumes were registered, the SPECT image volume was segmented using the right and left lung boundaries defined from the micro-CT volume, and the ratio of IA radioactivity accumulation in the left lung to IV radioactivity accumulation in both lungs was used as a measure of left lung flow via the bronchial circulation. This ratio was ~0.02 for the untreated rats compared to the treated animals that had an increased flow ratio of ~0.21 40 days after left pulmonary artery occlusion. This increase in flow to the occluded left lung via the bronchial circulation suggests this will be a useful model for further investigating antiangiogenic treatments
Bronchial Circulation Angiogenesis in the Rat Quantified with SPECT and Micro-CT
Introduction
As pulmonary artery obstruction results in proliferation of the bronchial circulation in a variety of species, we investigated this angiogenic response using single photon emission computed tomography (SPECT) and micro-CT. Materials and methods
After surgical ligation of the left pulmonary artery of rats, they were imaged at 10, 20, or 40 days post-ligation. Before imaging, technetium-labeled macroaggregated albumin (99mTc MAA) was injected into the aortic arch (IA) labeling the systemic circulation. SPECT/micro-CT imaging was performed, the image volumes were registered, and activity in the left lung via the bronchial circulation was used as a marker of bronchial blood flow. To calibrate and to verify successful ligation, 99mTc MAA was subsequently injected into the left femoral vein (IV), resulting in accumulation within the pulmonary circulation. The rats were reimaged, and the ratio of the IA to the IV measurements reflected the fraction of cardiac output (CO) to the left lung via the bronchial circulation. Control and sham-operated rats were studied similarly. Results
The left lung bronchial circulation of the control group was 2.5% of CO. The sham-operated rats showed no significant difference from the control. However, 20 and 40 days post-ligation, the bronchial circulation blood flow had increased to 7.9 and 13.9%, respectively, of CO. Excised lungs examined after barium filling of the systemic vasculature confirmed neovascularization as evidenced by tortuous vessels arising from the mediastinum and bronchial circulation. Conclusion
Thus, we conclude that SPECT/micro-CT imaging is a valuable methodology for monitoring angiogenesis in the lung and, potentially, for evaluating the effects of pro- or anti-angiogenic treatments using a similar approach
Morphology controls the thermoelectric power factor of a doped semiconducting polymer.
The electrical performance of doped semiconducting polymers is strongly governed by processing methods and underlying thin-film microstructure. We report on the influence of different doping methods (solution versus vapor) on the thermoelectric power factor (PF) of PBTTT molecularly p-doped with F n TCNQ (n = 2 or 4). The vapor-doped films have more than two orders of magnitude higher electronic conductivity (σ) relative to solution-doped films. On the basis of resonant soft x-ray scattering, vapor-doped samples are shown to have a large orientational correlation length (OCL) (that is, length scale of aligned backbones) that correlates to a high apparent charge carrier mobility (μ). The Seebeck coefficient (α) is largely independent of OCL. This reveals that, unlike σ, leveraging strategies to improve μ have a smaller impact on α. Our best-performing sample with the largest OCL, vapor-doped PBTTT:F4TCNQ thin film, has a σ of 670 S/cm and an α of 42 μV/K, which translates to a large PF of 120 μW m-1 K-2. In addition, despite the unfavorable offset for charge transfer, doping by F2TCNQ also leads to a large PF of 70 μW m-1 K-2, which reveals the potential utility of weak molecular dopants. Overall, our work introduces important general processing guidelines for the continued development of doped semiconducting polymers for thermoelectrics
- …