2 research outputs found

    Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors

    No full text
    We present artificially motorized sperm cellsa novel type of hybrid micromotor, where customized microhelices serve as motors for transporting sperm cells with motion deficiencies to help them carry out their natural function. Our results indicate that metal-coated polymer microhelices are suitable for this task due to potent, controllable, and nonharmful 3D motion behavior. We manage to capture, transport, and release single immotile live sperm cells in fluidic channels that allow mimicking physiological conditions. Important steps toward fertilization are addressed by employing proper means of sperm selection and oocyte culturing. Despite the fact that there still remain some challenges on the way to achieve successful fertilization with artificially motorized sperms, we believe that the potential of this novel approach toward assisted reproduction can be already put into perspective with the present work

    Dimensionality of Rolled-up Nanomembranes Controls Neural Stem Cell Migration Mechanism

    Get PDF
    We employ glass microtube structures fabricated by rolled-up nanotechnology to infer the influence of scaffold dimensionality and cell confinement on neural stem cell (NSC) migration. Thereby, we observe a pronounced morphology change that marks a reversible mesenchymal to amoeboid migration mode transition. Space restrictions preset by the diameter of nanomembrane topography modify the cell shape toward characteristics found in living tissue. We demonstrate the importance of substrate dimensionality for the migration mode of NSCs and thereby define rolled-up nanomembranes as the ultimate tool for single-cell migration studies
    corecore