15 research outputs found

    Multiple Sclerosis: MicroRNA Expression Profiles Accurately Differentiate Patients with Relapsing-Remitting Disease from Healthy Controls

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs) are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker, hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of 89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS

    Diagnosis of Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis by Measurement of microRNA Abundance in Blood and Tissue

    Get PDF
    A solid process for diagnosis could have a substantial impact on the successful treatment of pancreatic cancer, for which currently mortality is nearly identical to incidence. Variations in the abundance of all microRNA molecules from peripheral blood cells and pancreas tissues were analyzed on microarrays and in part validated by real-time PCR assays. In total, 245 samples from two clinical centers were studied that were obtained from patients with pancreatic ductal adenocarcinoma or chronic pancreatitis and from healthy donors. Utilizing the minimally invasive blood test, receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC) analysis demonstrated very high sensitivity and specificity of a distinction between healthy people and patients with either cancer or chronic pancreatitis; respective AUC values of 0.973 and 0.950 were obtained. Confirmative and partly even more discriminative diagnosis could be performed on tissue samples with AUC values of 1.0 and 0.937, respectively. In addition, discrimination between cancer and chronic pancreatitis was achieved (AUC = 0.875). Also, several miRNAs were identified that exhibited abundance variations in both tissue and blood samples. The results could have an immediate diagnostic value for the evaluation of tumor reoccurrence in patients, who have undergone curative surgical resection, and for people with a familial risk of pancreatic cancer

    miRNAs in lung cancer - Studying complex fingerprints in patient's blood cells by microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls.</p> <p>Methods</p> <p>We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls.</p> <p>Results</p> <p>Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%].</p> <p>Conclusion</p> <p>Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.</p

    High-throughput miRNA profiling of human melanoma blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNA (miRNA) signatures are not only found in cancer tissue but also in blood of cancer patients. Specifically, miRNA detection in blood offers the prospect of a non-invasive analysis tool.</p> <p>Methods</p> <p>Using a microarray based approach we screened almost 900 human miRNAs to detect miRNAs that are deregulated in their expression in blood cells of melanoma patients. We analyzed 55 blood samples, including 20 samples of healthy individuals, 24 samples of melanoma patients as test set, and 11 samples of melanoma patients as independent validation set.</p> <p>Results</p> <p>A hypothesis test based approch detected 51 differentially regulated miRNAs, including 21 miRNAs that were downregulated in blood cells of melanoma patients and 30 miRNAs that were upregulated in blood cells of melanoma patients as compared to blood cells of healthy controls. The tets set and the independent validation set of the melanoma samples showed a high correlation of fold changes (0.81). Applying hierarchical clustering and principal component analysis we found that blood samples of melanoma patients and healthy individuals can be well differentiated from each other based on miRNA expression analysis. Using a subset of 16 significant deregulated miRNAs, we were able to reach a classification accuracy of 97.4%, a specificity of 95% and a sensitivity of 98.9% by supervised analysis. MiRNA microarray data were validated by qRT-PCR.</p> <p>Conclusions</p> <p>Our study provides strong evidence for miRNA expression signatures of blood cells as useful biomarkers for melanoma.</p

    From nest to nest - Influence of ecology and reproduction on the active period of adult gombe chimpanzees

    No full text
    The time spent between sleeping periods, which is called the active period, has to accommodate all essential activities, including feeding, resting, social behavior, and reproduction. To minimize costs in terms of, e.g., predation risk, suboptimal foraging, or sleep deficiency, the active period of diurnal animals should be less than or equal to the daylight period. Thus, the active period of an animal should be shaped by local environmental conditions as well as by metabolic and reproductive demands. Chimpanzees, which exhibit reduced predator pressure and a flexible fission-fusion society, were chosen as a model to explore these links. We investigated the influence of sex, female reproductive status, dominance rank, and season on the duration of the active period of adult chimpanzees at Gombe National Park, Tanzania (1975-1992). Sexually nonreceptive females had shorter active periods compared to males, while receptive females had even longer active periods than males. Dominance rank did not influence the duration of the active period of nonreceptive females, but high- and middle-ranking males had shorter active periods compared to low-ranking males. Nonreceptive females exhibited longer active periods during the dry season than in the wet season. No seasonal effect was discovered for males, perhaps because they already had long active periods in the wet season. Nonreceptive females seem to be able to accommodate all essential activities in the daylight period available, probably because they live less socially than males. Thus, the active period does not reflect differences in female competitive abilities, but does reflect such differences in males. The duration of the active period appears to be a simple, reliable tool for exploring basic responses and constraints in animal societies.</p

    Barplots detailing intensity values recorded for particular miRNAs that exhibited significant expression variations.

    No full text
    <p>Only one typical result each is shown for blood and tissue. In the two panels on the left, the intensity values of miR-320a in blood samples are presented. The two panels to the right show the values of miRNA-103 as recorded in tissue samples. The horizontal lines in each panel represent the respective median.</p
    corecore