17 research outputs found

    Reprogrammation du métabolisme central du carbone des cellules myeloides lors de leur stimulation par les récepteurs de l'immunité innée

    No full text
    International audienceImmunometabolism is a relatively new field of research that aims at understanding interconnections between the immune system and cellular metabolism. This is now well-documented for innate immune cells of the myeloid lineage such as macrophages and myeloid dendritic cells (DCs) when they engage their differentiation or activation programs. Several studies have shown that stimulation of DCs or macrophages by the binding of pathogen-associated molecular patterns (PAMPs) to pattern recognition receptors (PRRs) leads to increased glycolytic activity and rewiring of central carbon metabolism. These metabolic modulations are essential to support and settle immunological functions by providing energy and immunoregulatory metabolites. As the understanding of molecular mechanisms progressed, significant differences between cell types and species have also been discovered. Pathways leading to the regulation of central carbon metabolism in macrophages and DCs by PRR signaling and consequences on cellular functions are reviewed here

    Toll-like Receptor 4-Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression

    No full text
    International audienceCell metabolism now appears as an essential regulator of immune cells activation. In particular, TLR stimulation triggers metabolic reprogramming of dendritic cells (DCs) with an increased glycolytic flux, whereas inhibition of glycolysis alters their functional activation. The molecular mechanisms involved in the control of glycolysis upon TLR stimulation are poorly understood for human DCs. TLR4 activation of human monocyte-derived DCs (MoDCs) stimulated glycolysis with an increased glucose consumption and lactate production. Global hexokinase (HK) activity, controlling the initial rate-limiting step of glycolysis, was also increased. TLR4-induced glycolytic burst correlated with a differential modulation of HK isoenzymes. LPS strongly enhanced the expression of HK2, whereas HK3 was reduced, HK1 remained unchanged, and HK4 was not expressed. Expression of the other rate-limiting glycolytic enzymes was not significantly increased. Exploring the signaling pathways involved in LPS-induced glycolysis with various specific inhibitors, we observed that only the inhibitors of p38-MAPK (SB203580) and of HIF-1α DNA binding (echinomycin) reduced both the glycolytic activity and production of cytokines triggered by TLR4 stimulation. In addition, LPS-induced HK2 expression required p38-MAPK-dependent HIF-1α accumulation and transcriptional activity. TLR1/2 and TLR2/6 stimulation increased glucose consumption by MoDCs through alternate mechanisms that are independent of p38-MAPK activation. TBK1 contributed to glycolysis regulation when DCs were stimulated via TLR2/6. Therefore, our results indicate that TLR4-dependent upregulation of glycolysis in human MoDCs involves a p38-MAPK-dependent HIF-1α accumulation, leading to an increased HK activity supported by enhanced HK2 expression

    Early Steps of Jaagsiekte Sheep Retrovirus-Mediated Cell Transformation Involve the Interaction between Env and the RALBP1 Cellular Protein

    No full text
    International audienceOvine pulmonary adenocarcinoma is a naturally occurring lung cancer in sheep induced by the Jaagsiekte sheep retrovirus (JSRV). Its envelope glycoprotein (Env) carries oncogenic properties, and its expression is sufficient to induce in vitro cell transformation and in vivo lung adenocarcinoma. The identification of cellular partners of the JSRV envelope remains crucial for deciphering mechanisms leading to cell transformation. We initially identified RALBP1 (RalA binding protein 1; also known as RLIP76 or RIP), a cellular protein implicated in the ras pathway, as a partner of JSRV Env by yeast two-hybrid screening and confirmed formation of RALBP1/Env complexes in mammalian cells. Expression of the RALBP1 protein was repressed in tumoral lungs and in tumor-derived alveolar type II cells. Through its inhibition using specific small interfering RNA (siRNA), we showed that RALBP1 was involved in envelope-induced cell transformation and in modulation of the mTOR (mammalian target of rapamycin)/p70S6K pathway by the retroviral envelope. IMPORTANCE: JSRV-induced lung adenocarcinoma is of importance for the sheep industry. While the envelope has been reported as the oncogenic determinant of the virus, the cellular proteins directly interacting with Env are still not known. Our report on the formation of RALBP/Env complexes and the role of this interaction in cell transformation opens up a new hypothesis for the dysregulation observed upon virus infection in sheep

    Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes

    No full text
    International audienceHepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication

    TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection

    No full text
    International audienceDysregulated Toll-like receptor (TLR)-4 activation is involved in acute systemic sepsis, chronic inflammatory diseases, such as atherosclerosis and diabetes, and in viral infections, such as influenza infection. Thus, therapeutic control of the TLR4 signalling pathway is of major interest. Here we tested the activity of the small-molecule synthetic TLR4 antagonist, FP7, in vitro on human monocytes and monocyte-derived dendritic cells (DCs) and in vivo during influenza virus infection of mice. Our results indicate that FP7 antagonized the secretion of proinflammatory cytokines (IL-6, IL-8, and MIP-1ÎČ) by monocytes and DCs (IC50 \textless 1 ÎŒM) and prevented DC maturation upon TLR4 activation by ultrapure lipopolysaccharide (LPS). FP7 selectively blocked TLR4 stimulation, but not TLR1/2, TLR2/6, or TLR3 activation. TLR4 stimulation of human DCs resulted in increased glycolytic activity that was also antagonized by FP7. FP7 protected mice from influenza virus-induced lethality and reduced both proinflammatory cytokine gene expression in the lungs and acute lung injury (ALI). Therefore, FP7 can antagonize TLR4 activation in vitro and protect mice from severe influenza infection, most likely by reducing TLR4-dependent cytokine storm mediated by damage-associated molecular patterns (DAMPs) like HMGB1

    A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity

    No full text
    International audienceDuring the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional con- sequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7- GCK+/HK2− cell line. HK2 knockdown and GCK expression rewired central carbon meta- bolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming

    A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity

    Get PDF
    International audienceDuring the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional con- sequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7- GCK+/HK2− cell line. HK2 knockdown and GCK expression rewired central carbon meta- bolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming
    corecore